
Blind Beamforming for Multiple Intelligent
Reflecting Surfaces

Jiawei Yao†, Fan Xu‡, Wenhai Lai†, Kaiming Shen†, Xin Li∗, Xin Chen∗, and Zhi-Quan Luo†§
†School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), China

‡Peng Cheng Laboratory, Shenzhen, China
∗Huawei Technologies

§Shenzhen Research Institute of Big Data, China
E-mail: jiaweiyao@link.cuhk.edu.cn; xuf02@pcl.ac.cn; wenhailai@link.cuhk.edu.cn;

shenkaiming@cuhk.edu.cn; razor.lixin@huawei.com; chenxin@huawei.com; luozq@cuhk.edu.cn

Abstract—Channel acquisition is a major challenge faced
by the conventional beamforming methods when dealing with
multiple intelligent reflecting surfaces (IRSs), because the number
of unknown channels grows exponentially with the number of
IRSs. This work proposes to sidestep channel estimation and to
configure the IRSs blindly based on the statistical information
which is extracted from a set of random samples of the received
signal power. The proposed blind beamforming method has
provable performance in terms of the signal-to-noise ratio (SNR)
boost. For instance, it yields a quartic SNR boost of Θ(N4)
for a double-IRS system under certain condition, where N is
the number of reflected elements of each IRS. We remark that
the above Θ(N4) result is more sophisticated than the existing
ones about the double-IRS system in the literature. Furthermore,
we numerically demonstrate the advantage of the proposed blind
beamforming method through prototype tests with multiple IRSs.

Index Terms—Practical discrete beamforming without channel
state information, multiple intelligent reflecting surface (IRSs),
quartic signal-to-noise ratio (SNR) boost, prototype tests.

I. INTRODUCTION

Intelligent reflecting surface (IRS) is a low-cost and energy-
efficient device (as compared to base-station and relay) that
harnesses the signal reflection to improve the data rate,
coverage, connectivity, and reliability of wireless networks.
In order to capture as many impinging signals as possible
from the environment, there has been considerable interest
in deploying multiple IRSs [1], [2]. This work advocates a
blind beamforming policy for coordinating multiple IRSs in
the absence of channel information.

The proposed method stems from a recent discovery [3]
which seems at first surprising: the reflected channels can be
aligned with the direct channel without knowing any channel
state information. While [3] has demonstrated the essential
power of the above result in enhancing a single-IRS system,
this work goes further to take multiple IRSs into account. We
show that blind beamforming enables a quartic signal-to-noise
ratio (SNR) boost of Θ(N4) for a double-IRS system, where
N is the number of reflected elements (REs). The previous
work [1] shows the Θ(N4) boost under a much stronger
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assumption; it can be thought of as a special case of the result
of this paper. Moreover, we validate the performance gain of
the proposed algorithm called sequential conditional sample
mean (SCSM) in field tests.

Blind beamforming does not require any channel knowl-
edge. By contrast, the previous studies on the multi-IRS
systems typically follow the traditional two-stage paradigm of
first estimating channels and then configuring IRSs. However,
the complexity of channel acquisition grows exponentially
with the number of IRSs. Actually, the state-of-the-art channel
estimation methods [4]–[7] are limited to merely two IRSs.
As a result, many existing works focus on the beamforming
problem for a double-IRS system. Assuming that the phase
shifts can be tuned continuously and that there exist only two-
hop reflected channels from the transmitter to the receiver,
[1] shows that it is optimal to direct the beams of the first
IRS toward the other IRS, and consequently an SNR boost
of Θ(N4) can be attained. Our method SCSM is capable
of achieving the same SNR boost under a more general
double-IRS setting, yet without requiring channel information.
The authors of [8] assume that only the reflected channels
(either one-hop or two-hop) exist in a double-IRS system with
multiple receivers; an upper bound on the max-min objective
is devised to facilitate the alternating optimization of the two
IRSs. The above problem is also considered in [9] from a
fractional programming perspective. Moreover, [10] utilizes
the double-IRS system to prevent eavesdropping by means of
majorization-minimization.

When a large number of IRSs are deployed in the system,
not only does the exponential growth of the number of
channels impede channel acquisition, but it can also render
the IRS coordination a challenging task. To find a tractable
approximation of the multi-IRS problem, it is common practice
in the literature to assume that only a small portion of channels
are sufficiently strong while the rest can all be ignored. For
instance, [11] assumes that only the direct channel and the
longest reflected channel exist, and [12] assumes that only
the direct channel, one-hop channels, and two-hop channels
exist. The resulting simplified beamforming problems can be
addressed by the reinforcement learning [11] and the weighted
minimum mean squared error (WMMSE) algorithm [12].
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Another line of studies [13], [14] aim to find the optimal
cascaded path out of the survived channels, namely beam
routing. In particular, [13] proposes a routing scheme that does
not entail channel information, but it requires each IRS to
constantly measure the received signal power and report it to
base-station. In comparison, the blind beamforming strategy
proposed in this paper aims at a fully general multi-IRS setup
without ignoring any channels, which does not require each
IRS to measure its received signals and also does not require
base-station to collaborate.

II. SYSTEM MODEL

Consider a point-to-point wireless transmission in aid of
L ≥ 2 IRSs. The transmitter and receiver are equipped with
one antenna each. Assume that every IRS consists of N
reflective elements. We use nℓ = 1, . . . , N to index each RE
of the IRS ℓ. Let θnℓ

∈ [0, 2π) be the phase shift induced by
the RE nℓ of the IRS ℓ into its associated reflected channels.
From a practical stand, assume that each θnℓ

can only take on
values from a discrete set

ΦK = {ω, 2ω, . . . ,Kω} where ω =
2π

K
(1)

for some prescribed integer K ≥ 2, namely passive discrete
beamforming. We use hn1,...,nL

to denote the cascaded channel
associated with the RE nℓ of IRS ℓ, for ℓ = 1, . . . , L; in
particular, we let nℓ = 0 if the cascaded channel is not related
to the ℓth IRS, so h0,...,0 represents the direct channel from the
transmitter to the receiver. Thus, with the transmit signal X ∈
C and the additive complex Gaussian noise Z ∼ CN (0, σ2),
the received signal Y ∈ C is given by

Y =
∑

(n1,...,nL)∈{0,...,N}L

hn1,...,nL
ej

∑L
ℓ=1 θnℓX + Z (2)

with a dummy variable θnℓ
= 0 whenever nℓ = 0. In

particular, when L = 2, we have

Y = h0,0X +

N∑
n1=1

hn1,0e
jθn1X +

N∑
n2=1

h0,n2e
jθn2X

+

N∑
n1=1

N∑
n2=1

hn1,n2
ej(θn1+θn2 )X + Z, (3)

where the first term is the direct signal, the second term is
the signal reflected by the first IRS alone, the third term is
the signal reflected by the second IRS alone, and the fourth
term is the signal sequentially reflected by the two IRSs, as
illustrated in Fig. 1.

With the transmit power E[|X|2] denoted by P , the received
SNR with IRSs can be computed as

SNR =

∣∣∣∣∣∣
∑

(n1,...,nL)∈{0,...,N}L

hn1,...,nL
ej

∑L
ℓ=1 θnℓ

∣∣∣∣∣∣
2

P

σ2
. (4)

We wish to quantify the benefit brought by IRSs. Toward this

Transmitter Receiver

IRS 1 IRS 2

Fig. 1. A double-IRS system with L = 2.

end, define the baseline SNR without IRS as

SNR0 = |h0|2
P

σ2
. (5)

This work aims to maximize the SNR boost, i.e., the ratio of
the improved SNR to the baseline SNR by choosing the phase
shifts {θnℓ

} properly under the discrete constraint ΦK . The
above task can be formally stated as

maximize
{θnℓ

: ∀(ℓ,n)}

SNR

SNR0
(6a)

subject to θnℓ
∈ ΦK , ∀(ℓ, n). (6b)

We remark that the channels {hn1,...,nL
} in the above problem

are unknown a priori.

III. BLIND BEAMFORMING FOR MULTIPLE IRSS

We first motivate the blind beamforming approach by show-
ing how difficult it is to estimate channels for massive IRSs.
The existing works mostly estimate each cascaded channel
hn1,...,nL

separately. It can be seen from (2) that the number
of cascaded channels grows exponentially with the number of
IRSs. Alternatively, one may suggest estimating the channel
between each pair of IRSs and further obtaining hn1,...,nℓ

via concatenation, thereby reducing the number of estimated
channels to 2NL+

(
L
2

)
N2 = O(N2L2). The main issue with

the above approach is that the cost and the complexity of IRS
would then increase significantly because a receive antenna
must be deployed at each RE for channel acquisition. Hence,
we wish to get rid of channel estimation altogether and learn
how to configure the IRSs without channel information.

A. Conditional Sample Mean (CSM)

Before proceeding to a fully general algorithm for multiple
IRSs, let us first consider how to perform blind beamforming
for a single-IRS system, i.e., the special case with L = 1. Since
there is only one IRS, we drop the IRS index ℓ throughout this
subsection, e.g., θn1

is written as θn.
If the channels are already known, then a natural idea is to

align each reflected channel with the direct channel so as to
maximize their superposition; if the perfect alignment cannot
be achieved due to the discrete constraint ΦK , we could choose
each θn, n = 1, . . . , L, to rotate hn to the closest possible
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Algorithm 1 Sequential Conditional Sample Mean (SCSM)
1: Initialize all the θnℓ

’s to feasible values.
2: for ℓ = 1, . . . , L do
3: Generate a total of T random samples.
4: Compute the conditional sample mean as in (8).
5: Decide θnℓ

according to (9) for IRS ℓ.
6: end for

position to h0, namely closest point projection (CPP). As a
result, the SNR boost ρ is quadratic in N in most cases.

It turns out that the CPP method can be carried out implicitly
in the absence of channel knowledge. We first generate a total
of T random samples of {θ(t)n : n = 1, . . . , N}, where t =
1, . . . , T is the sample index and each entry θn is drawn i.i.d.
uniformly from ΦK . Let Gn,k ⊆ {1, . . . , T} be a subset of
indices of those random samples with θ

(t)
n randomly set to

kω, i.e.,

Gn,k =
{
t ∈ [1 : T ] such that θ(t)n = kω

}
. (7)

Measure the corresponding received signal power |Y (t)|2 for
each random sample t, and further compute the conditional
sample mean of |Y (t)|2 within each Gn,k:

Ê[|Y |2|θn = kω] =
1

|Gn,k|
∑

t∈Gn,k

|Y (t)|2. (8)

The CSM method is to decide each θn such that the related
conditional sample mean is maximized, denoted as

θ′n = arg max
φ∈ΦK

Ê[|Y |2|θn = φ]. (9)

Proposition 1 (Theorem 2 in [3]): The CSM method in (9)
yields an SNR boost that is quadratic in the number of REs,
i.e.,

E
[
SNR

SNR0

]
= ρ ·O(N2), (10)

where the factor ρ is defined to be

ρ =

∑N
n=1 |hn|2

N |h0|2
. (11)

B. Sequential CSM for Multiple IRSs

We propose extending the above CSM method to multiple
IRSs in a sequential fashion. Specifically, for each iteration,
we run CSM on one particular IRS while holding the phase
shifts of the rest IRSs fixed.

Simple as the above extended CSM seems, it is guaranteed
to be yield equally good performance as the existing method
in [1] based on continuous beamforming and perfect channel
information. The following proposition provides more details.

Proposition 2: Consider a double-IRS system with the
number of phase shift choices K > 2. Assume line-of-sight
(LoS) propagation between the two IRSs so that the two-hop

channel matrix is rank one [1] and can be decomposed ash1,1 · · · h1,N

...
...

hN,1 · · · hN,N

 =

u1

...
uN

 [v1 · · · vN
]
. (12)

If there exists some γ ∈ [0, π
2 −

π
K ) such that

|hn1,0| ≤ sin γ ·

∣∣∣∣∣
N∑

n2=1

hn1,n2

∣∣∣∣∣ , for all n1 = 1, . . . , N, (13)

then the SCSM method yields a quartic SNR boost as

E
(

SNR

SNR0

)
=

δ21δ
2
2

|h0|2
·Θ(N4), (14)

where

δ1 =
1

N

N∑
n1=1

|un1 | and δ2 =
1

N

N∑
n2=1

|vn2 |, (15)

after only one iteration, i.e., when the two IRSs have been
optimized one time each.

Proof: Since |h0|2 and P are fixed, it suffices to show that
E[|g|2] = δ21δ

2
2 ·Θ(N4), where g represents the superposition

of all the channels with the IRS phase shifts θn1 and θn2 , i.e.,

g(θn1
, θn2

) = h0,0 +

N∑
n1=1

hn1,0e
jθn1 +

N∑
n2=1

h0,n2
ejθn2

+

N∑
n1=1

N∑
n2=1

hn1,n2e
j(θn1

+θn2
). (16)

To establish E[|g|2] = δ21δ
2
2 · Θ(N4), we need to verify

the converse E[|g|2] = δ21δ
2
2 · O(N4) and the achievability

E[|g|2] = δ21δ
2
2 · Ω(N4).

The converse is evident since

|g|2 ≤
∣∣∣∣|h0,0|+

∑
n1

|hn1,0|+
∑
n2

|h0,n2
|+

∑
n1,n2

|hn1,n2
|
∣∣∣∣2

= δ21δ
2
2 ·O(N4).

The rest of the proof focuses on the achievability.

Without loss of generality, assume that both θn1 and θn2 are
initialized to zero at the beginning of the proposed algorithm;
otherwise the initial phase shifts can be incorporated into the
channels. According to the algorithm, we first configure IRS
1 with IRS 2 held fixed, by treating all the channels related
to IRS 1 as the reflected channel and the rest as the direct
channel. Thus, the continuous solution of θn1 is to align the
reflected channel with the direct channel exactly, i.e.,

θ⋆n1
= ∠

(
h0,0 +

∑
n2

h0,n2︸ ︷︷ ︸
direct channel

)
− ∠

(
hn1,0 +

∑
n2

hn1,n2︸ ︷︷ ︸
reflected channel

)
.

(17)
According to Proposition 1, configuring IRS 1 by conditional
sample mean is equivalent to rotating the reflected channel to
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the closest position to the direct channel, i.e.,

θ′n1
= arg min

θ∈ΦK

∣∣θ − θ⋆n1

∣∣. (18)

Clearly, we have ∣∣θ′n1
− θ⋆n1

∣∣ ≤ π

K
. (19)

Moreover, we approximate the continuous solution θ⋆n1
by

removing the single-hop reflect channels, which is

θ̂⋆n1
= ∠

(
h0,0 +

∑
n2

h0,n2

)
− ∠

(∑
n2

hn1,n2

)
. (20)

Because of (13), the error of the above approximation can be
bounded above as ∣∣θ̂⋆n1

− θ⋆n1

∣∣ ≤ γ. (21)

Combining (19) and (21) gives∣∣θ̂⋆n1
− θ′n1

∣∣ ≤ π

K
+ γ. (22)

Subsequently, IRS 2 is configured with each phase shift of IRS
1 fixed at θ′n1

. We now treat all the channels related to IRS
2 as reflected channel and treat the rest as the direct channel.
Thus, the continuous solution of θn2 is given by

θ⋆n2
=

∠

(
h0,0 +

∑
n1

hn1,0e
jθ′

n1

︸ ︷︷ ︸
direct channel

)
− ∠

(
h0,n2 +

∑
n1

hn1,n2e
jθ′

n1

︸ ︷︷ ︸
reflected channel

)
.

(23)

Again, by Proposition 1, it can be shown that

θ′n2
= arg min

θ∈ΦK

∣∣θ − θ⋆n2

∣∣ (24)

and ∣∣θ′n2
− θ⋆n2

∣∣ ≤ π

K
. (25)

For ease of notation, we write

ξn2
= h0,n2

+
∑
n1

hn1,n2
ejθ

′
n1 . (26)

It can be shown that

|g(θ′n1
, θ′n2

)|2 =

∣∣∣∣∣h0,0 +
∑
n1

hn1,0e
jθ′

n1 +
∑
n2

ejθ
′
n2 ξn2

∣∣∣∣∣
2

(a)

≥

(
cos

π

K
·
∑
n2

|ξn2 |

)2

, (27)

where the lower bound in (a) is obtained by projecting each
ejθ

′
n2 ξn2

onto h0,0+
∑

n1
hn1,0e

jθ′
n1 and by using the fact that∣∣∠(ejθ′

n2 ξn2
) − ∠(h0,0 +

∑
n1

hn1,0e
jθ′

n1 )
∣∣ = |θ′n2

− θ⋆n2
| ≤

π/K according to (25). We further bound the value of |ξn2
|:

|ξn2
| =

∣∣∣h0,n2
+
∑

n1

hn1,n2
ejθ

′
n1

∣∣∣
=
∣∣∣∑

n1

hn1,n2e
jθ′

n1

∣∣∣+ o(N)

=
∣∣∣∑

n1

hn1,n2
ejθ̂

⋆
n1 ej(θ

′
n1

−θ̂⋆
n1

)
∣∣∣+ o(N)

(b)
=
∣∣∣∑

n1

un1
vn2

ej(η−∠un1 )ej(θ
′
n1

−θ̂⋆
n1

)
∣∣∣+ o(N)

= |vn2
| ·
∣∣∣∑

n1

|un1
|ej(θ

′
n1

−θ̂⋆
n1

)
∣∣∣+ o(N)

(c)

≥ |vn2 | · cos
(
γ +

π

K

)
·
∑

n1

|un1 |+ o(N), (28)

where a new variable η = ∠
(
h0,0+

∑
n2

h0,n2

)
−∠
(∑

n2
vn2

)
is introduced in step (b) and can be ignored in the rest
steps since it is independent of n1. In the above sequence
of inequalities, step (b) follows by the rank-one assumption
in (12), and step (c) follows by the bound between θ′n1

and
θ̂⋆n1

as stated in (22). Finally, combining (27) and (28) gives

|g(θ′n1
, θ′n2

)|2 = Ω

((∑
n2

∑
n1

|vn2
||un1

|
)2)

= δ21δ
2
2Ω(N

4). (29)

The proof is then completed.

C. Some Comments on Proposition 2
We first provide intuition on the condition assumed in

Proposition 2. The channel matrix factorization in (12) plays a
key role in bounding below the term |ξn2 | in (28). Intuitively,
we aim to make each |ξn2 | be in order of N . Because
ξn2 ≈

∑
n1

hn1,n2e
jθ′

n1 , it requires at least a constant portion
of {hn1,n2

ejθ
′
n1 } to be aligned. But we have only N phase

shift variables θ′n1
to manipulate; the degrees of freedom are

far insufficient to achieve the above alignment for every |ξn2
|,

n2 = 1, . . . , N . Nevertheless, with the channel matrix [hn1,n2
]

factorized as in (12), we gain the great convenience that
once {hn1,n2e

jθ′
n1} are aligned for a particular ξn2 then the

alignments are automatically attained for the rest ξn2 ’s. This
desirable property enables us to reach linear growth for every
|ξn2

| by choosing θ′n2
properly. This result suggests deploying

the IRSs at the LoS locations.
It is also worth noting that Proposition 2 generalizes the

existing result in [1] in two respects. First, [1] assumes con-
tinuous beamforming while we assume discrete beamforming.
Second, [1] assumes that h0,0 = hn1,0 = h0,n2

= 0 for any
n1, n2 while we only assume that they are sufficiently small
(and not necessarily approaching zero). The following remark
summarizes the above comparison.

Remark 1: The previous work [1] also shows that an SNR
boost of Θ(N4) can be achieved for a double-IRS system
under certain condition. However, the condition assumed in [1]
is much stricter than that assumed in Proposition 2. First, [1]
only considers continuous beamforming by letting K → ∞
whereas Proposition 2 allows finite K. Second, [1] requires
that both the direct channel h0,0 and the single-hop reflected
channels {hn1,0, h0,n2} be zero whereas Proposition 2 only
requires them to be sufficiently small. Most importantly, [1]
assumes perfect channel information available whereas this
work pursues blind beamforming.

Furthermore, as an extension of Proposition 2, it can be
shown that an SNR boost of Θ(N2L) can be reaped for an

2023 IEEE International Conference on Communications (ICC): Communication Theory Symposium

874
Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on July 22,2024 at 03:42:36 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2. The triple-IRS system in our prototype tests. The IRS in the middle comprises 64 REs and provides 4 phase shift options {0, π/2, π, 3π/2}, while
the other two IRSs comprise 294 REs each and provide 2 phase shift options {0, π}. We reduce it to a double-IRS system by removing the middle IRS.

Receiver Transmitter

IRS 2 IRS 1

3.2 m

5.1 m

2.3 m

IRS 3

3.0 m

Fig. 3. Layout drawing of the triple-IRS system in our field tests. It reduces
to the double-IRS system when IRS 3 (located in the middle) is removed.

L-IRS system when L ≥ 2. Lack of space prevents our
discussing this nontrivial extension. We refer the reader to
the journal version of this work for the full generalization.
Nevertheless, the experiments in this paper involve more than
two IRSs, as shown in the following section.

IV. EXPERIMENTS

A. Field Tests

Our field tests are carried out in an indoor environment as
displayed in Fig. 2; the detailed locations of all the devices
can be found in Fig. 3. We use the 2.6 GHz spectrum band
for the transmission. Three IRSs are used:

• IRS 1 comprises 294 REs each and provides 2 phase shift
options {0, π}, i.e., N1 = 294 and K = 2.

• IRS 2 is identical to IRS 1, i.e., N2 = 294 and K = 2.
• IRS 3 comprises 64 REs and provides 4 phase shift

options {0, π/2, π, 3π/2}, i.e., N3 = 64 and K = 4.

Aside from the proposed Algorithm 1, the following methods
are included in field tests as benchmarks:

• Single-IRS: Further remove IRS 2 from the double-IRS
system, and configure IRS 1 by the CSM method [3].

• Double-IRS non-LoS: Put IRS 1 and IRS 2 together at the
location of IRS 1 to form a larger IRS (with 588 REs);
CSM [3] is used to configure this combined IRS.

TABLE I
PERFORMANCE OF THE DIFFERENT METHODS IN FIELD TESTS

Algorithm SNR (dB) SNR Boost (dB)

Without IRS 10.07 0.00

Single-IRS 16.96 6.89

Double-IRS non-LoS 18.09 8.02

Double-IRS uncoordinated 18.94 8.87

Double-IRS 20.13 10.06

Triple-IRS 21.89 11.82

• Double-IRS uncoordinated: IRS 1 and IRS 2 are located
as in Fig. 3. Configure them using CSM [3] by treating
the two IRSs as a single IRS.

Each of the above three benchmarks uses 2000 random sam-
ples. The proposed SCSM method uses 1000 random samples
for each IRS.

The test results are summarized in Table I. It shows that
a remarkable SNR boost of around 7 dB can already be
achieved with only one IRS deployed. When two IRSs are
available, distributing them as in Fig. 3 is more beneficial
than putting them together (i.e., double-IRS non-LoS); this
result agrees with our conclusion from Proposition 2. By
comparing “double-IRS uncoordinated” and “double-IRS”, it
can be observed that the proposed algorithm outperforms the
baseline of treating two IRSs as a single IRS. Observe also that
adding one more IRS to the system can further raise the SNR
boost by about 2 dB, even through the added IRS consists of
merely 64 REs.

B. Simulation Tests

We further consider some other tests in simulations; these
tests are difficult to do on the prototype machines because
of the hardware issue. Consider a double-IRS system. The
transmitter, receiver, IRS 1, and IRS 2 are located at (1, 0, 2),
(1, 50, 0), (0,−5, 1), and (0, 55, 1), respectively, all in meters.
The transmit power is 20 dBm and the background noise power
is -80 dBm. The direct pathloss model is 32.6 + 36.7 log10 d
and the reflected pathloss model is 30 + 22 log10 d, where d
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Fig. 4. SCSM vs. the conventional channel estimation based method.

is the distance in meters. Rayleigh fading is assumed. The set
of phase shift choices is {0, π/2, π, 3π/2}.

Fig. 4 shows the cumulative distribution of the SNR boost
for the proposed blind beamforming method versus the chan-
nel estimation based method. The channels are estimated
by the DFT method [15]. After obtaining the channels, the
two IRSs are optimized in an alternating fashion such that
each reflected channel is aligned with the direct channel, and
ultimately the continuous solution is rounded to the discrete
set, namely the closest point projection (CPP). As shown in
Fig. 4, the proposed method SCSM outperforms the channel
estimation plus CPP significantly. At the 50th percentile, the
proposed method achieves approximately 2 dB higher in terms
of the SNR boost than the channel estimation based method.

Moreover, we plot how the SNR boost of the proposed
method scales with the number of REs N in Fig. 5. It shows
that the proposed method already yields a near-quartic growth
of the SNR boost even for a modest rise in N .

V. CONCLUSION

This work aims to coordinate multiple IRSs in the ab-
sence of channel state information to avoid the complexity
of cascaded channel estimation. The main idea is to broaden
the scope of the blind beamforming strategy in [3] from the
single-IRS case to the multi-IRS case. The extended blind
beamforming algorithm guarantees a quartic SNR boost for
a double-IRS system under a more general setting than the
previous study in [1]. As shown in the real-world experiments,
applying the proposed algorithm to a triple-IRS system can
raise SNR by almost 12 dB.
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