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Abstract—Configuring intelligent surface (IS) or passive antenna array without any channel knowledge, namely blind beamforming, is
a frontier research topic in the wireless communication field. Existing methods in the previous literature for blind beamforming include
the RFocus and the CSM, the effectiveness of which has been demonstrated on hardware prototypes. However, this paper points out a
subtle issue with these blind beamforming algorithms: the RFocus and the CSM may fail to work in the non-line-of-sight (NLoS)
channel case. To address this issue, we suggest a grouping strategy that enables adaptive blind beamforming. Specifically, the
reflective elements (REs) of the IS are divided into three groups; each group is configured randomly to obtain a dataset of random
samples. We then extract the statistical feature of the wireless environment from the random samples, thereby coordinating phase
shifts of the IS without channel acquisition. The RE grouping plays a critical role in guaranteeing performance gain in the NLoS case. In
particular, if we place all the REs in the same group, the proposed algorithm would reduce to the RFocus and the CSM. We validate the
advantage of the proposed blind beamforming algorithm in the real-world networks at 3.5 GHz aside from simulations.

Index Terms—Intelligent surface (IS), RFocus, CSM, blind beamforming without channel estimation, random sampling.

✦

1 INTRODUCTION

PASSIVE antennas [1], [2], a.k.a. reflectors [3], [4], consti-
tute an emerging wireless technology that harnesses the

existing reflected paths to enhance wireless transmission.
An array of passive antennas are coordinated by choosing
their ON-OFF statuses, i.e., a passive antenna reflects the
incident signal if it is ON and absorbs the incident signal
otherwise. The idea of passive antennas further evolves into
the notion of intelligent surface (IS) [5]–[8]. An IS consists of
an array of reflective elements (REs)—which induce phase
shifts into their respective incident signals. To fully exploit
IS or passive antennas, it entails judicious coordination of
the phase shifts across the REs or the ON-OFF statuses across
the passive antennas, namely passive beamforming.

The conventional approach to the passive beamforming
problem is model-driven: it first estimates the channels for
all the propagation paths to formulate the problem model
explicitly, and then optimizes the phase shifts (or the ON-OFF
statuses) based on the problem model. However, it is diffi-
cult to carry out the model-driven approach in real-world
networks because of the following two practical issues:

i. Each reflected path alone is quite weak as compared to
the overall channel strength and the background noise,
so precise channel acquisition is technically difficult.
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Fig. 1. Line-of-sight (LoS) case vs. non-line-of–sight (NLoS) case for the
IS-assisted transmission. As a subtle issue discovered in this work, the
existing blind beamforming algorithms, the RFocus [2] and the CSM [33],
can fail to work in the NLoS case.

ii. Channel estimation for IS or passive antennas requires
extra overhead and operation, which is not supported
by the current network protocol.

As such, even though the model-driven approach has been
extensively studied in the literature to date, e.g., by us-
ing the semidefinite relaxation (SDR) [9]–[16], or the frac-
tional programming (FP) [17]–[23], or the minorization-
maximization (MM) [24]–[27], or the penalty convex-
concave procedure (P-CCP) [28], or the convex-hull relax-
ation method [29], yet it turns out that the existing IS proto-
types [2], [30]–[32] seldom consider estimating channels.

Due to the difficulties and high cost of channel acqui-
sition, there has been an increasing interest in configuring
IS without channel state information (CSI). For instance,
[34] examines the expected achievable rate when the phase
shifts are randomly selected; [35] proposes a distributed
ascent algorithm for the continuous IS beamforming based
on the signal-to-noise ratio (SNR) feedback; [36] proposes
an IS-aided joint index keying M -ary differential chaos shift
keying system where the receiver can retrieve information
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bits by performing non-coherent correlation demodulation
without CSI. The so-called beam training method [37]–
[40] constitutes another line of endeavors to perform blind
beamforming, which simply tries out a sequence of possible
beamformers listed in a prescribed codebook and pick the
best one. Although the core idea of beam training is fairly
simple, designing the codebook can be quite difficult; a
common heuristic is to generate the codebook randomly.
However, we will show that beam training with such a
random codebook is strictly inferior to the RFocus algorithm
[2] and the CSM algorithm [33]. Our work is most closely
related to the above two methods which are based on
statistics. Specifically, [2] first proposes the idea of deciding
the ON-OFF status for each passive antenna according to the
empirical conditional average of received signal power. The use
of the empirical conditional average is further developed in
[33] to account for the phase shift optimization for IS. More
recently, the CSM algorithm is extended for multiple ISs
[41] and for multiple users [42]. However, this work points
out that the RFocus algorithm and the CSM algorithm are
fundamentally flawed, and consequently can fail to work in
the non-line-of-sight (NLoS) case wherein the direct path is
much weaker than the superposition of the reflected paths,
as illustrated in Fig. 1. To be more specific, when analyzing
the performance of their algorithms, [2], [33] both implicitly
assume that the direct path is sufficiently strong so that the
empirical conditional average of the received signal power
can accurately capture the main feature of the wireless
environment. However, if the strong-direct-path assumption
no longer holds (which can occur in the real world as shown
in [43]), then the empirical conditional average reduces to
a constant and all the subsequent steps break down. To
resolve this issue, this work advocates a novel adaptive
blind beamforming algorithm, which divides and groups
the REs to form a virtual direct path and thereby enables
the empirical conditional average-based approach.

To avoid channel estimation, some recent works [44]–
[46] suggest using the deep neural network to learn the
phase shift decision directly from the received pilot signals.
However, its performance is sensitive to the training dataset,
so we have to retrain or finetune the deep neural network
whenever the wireless environment alters. Although the
proposed blind beamforming method also relies on the
dataset, it has much higher efficiency since only the basic
operation of conditioning and averaging is required. Most
importantly, blind beamforming extracts the main feature of
the wireless environment by the statistic tool rather than the
black-box neural network, so its performance is explainable
and provable.

Further, the blind beamforming algorithm proposed in
this work can be distinguished from the existing ones in that
the former is examined for fading channels case whereas the
latter [2], [33]–[35], [41] mostly assume static channels. In
the previous literature, the studies on passive beamforming
in fading channels typically depend upon the two-state
paradigm of first estimating channels and then solving
the optimization problem. At the optimization stage, the
optimization tools range from the projected gradient ascent
method [47]–[49] to the complex circle manifold method
[50], [51], the parallel coordinate descent method [52], the
genetic algorithm [53]–[55], the particle swarm algorithm

[56], [57], and the deep learning [58]–[60]. Moreover, [61]
suggests a model-free gradient descent method by using a
large dataset of historical channel values, the main idea of
which is to predict the current channel distribution from
past observations. In principle, the above methods all as-
sume that the probability distribution of channel fading
is either already known or predictable, but such statistical
information for each single reflected channel can be costly to
obtain when the IS comprises massive REs. In contrast, our
strategy only requires the first-moment statistics (i.e., the
empirical conditional average) of the received signal power.

The main contributions of the present paper are summa-
rized in the following:

• Although the previous works [2], [33] have theoret-
ically verified the performance gain of their blind
beamforming algorithms, we point out that their
proofs are incomplete by showing that their algo-
rithms can fail to work when the direct propagation
path is not strong enough.

• To resolve the above issue, we incorporate the idea
of the RE grouping into the existing empirical condi-
tional average algorithms [2], [33], thus allowing the
blind beamforming algorithm to flexibly adapt to the
current channel situation.

• As opposed to the existing blind beamforming stud-
ies that are limited to the static channel case, this
paper proves the performance of the empirical con-
ditional average-based approach works for fading
channels.

The rest of the paper is organized as follows. Section
2 describes the system model and problem formulation.
Section 3 analyzes the performance of the RFocus [2] and
the CSM [33] for fading channels, and then points out that
the two existing blind beamforming algorithms can fail to
work in some cases. Section 4 proposes a novel RE-grouping
adaptive blind beamforming algorithm; its extension to
multiple users is discussed as well. Section 5 shows the
numerical results. Finally, Section 6 concludes the paper.

Notation: Here and throughout, the set of complex num-
bers is denoted as C. For a complex number u,Re{u},
Im{u}, uH , and ∠u refer to the real part, the imaginary
part, the complex conjugate, and the phase of u, respectively.
For an event E , let P{E} be its probability. Let E[X] be the
expectation of the random variable X , and let Ê[X] be the
sample mean. For a set A, let |A| be its cardinality. The
complex Gaussian distribution with mean µ and variance σ2

is denoted as CN (µ, σ2). Moreover, the Bachmann-Landau
notation is used extensively in the remainder of the paper.
Write f(n) = O(g(n)) if there exists some c > 0 such that
|f(n)| ≤ cg(n) for n sufficiently large; write f(n) = Ω(g(n))
if there exists some c > 0 such that f(n) ≥ cg(n) for n
sufficiently large; write f(n) = Θ(g(n)) if f(n) = O(g(n))
and f(n) = Ω(g(n)) both hold.

2 SYSTEM MODEL

Consider an IS-assisted wireless communication system.
The following model can be readily extended for the passive
antennas. Assume that the transmitter and receiver have
one antenna each, and that the IS consists of N REs in
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total. Every RE corresponds to a reflected path from the
transmitter to the receiver. Denote by hn ∈ C the reflected
channel associated with RE n = 1, . . . , N , and denote by
h0 ∈ C the direct channel from the transmitter to the
receiver. Each reflected channel hn can be factored as

hn = fn × gn, (1)

where fn ∈ C is the channel from the transmitter to RE
n while gn ∈ C is the channel from RE n to the receiver.
Furthermore, these channels are modeled as the Rician
fading [62]:

h0 =
√
γ00

(√
δ00

1 + δ00
h0 +

√
1

1 + δ00
h̃0

)
(2a)

fn =
√
γ0n

(√
δ0n

1 + δ0n
fn +

√
1

1 + δ0n
f̃n

)
(2b)

gn =
√
γn0

(√
δn0

1 + δn0
gn +

√
1

1 + δn0
g̃n

)
, (2c)

where the real scalars γ00, γ0n, γn0 ∈ [0, 1] are the atten-
uation factors, the normalized complex scalars h0, fn, gn
are the line-of-sight (LoS) components, the real scalars
δ00, δ0n, δn0 ≥ 0 are the Rician factors, and the i.i.d. standard
complex Gaussian random variables h̃0, f̃n, g̃n ∼ CN (0, 1)
are the NLoS components. In particular, the above Rician
fading model reduces to the Rayleigh fading model as the
Rician factors δ00, δ0n, δn0 tend to zero. Further, with (2b)
and (2c) plugged in (1), each reflected channel hn can be
obtained as

hn =
√
γ0nγn0 ×(√

δ0nδn0
(1 + δ0n)(1 + δn0)

hn +

√
1

(1 + δ0n)(1 + δn0)
h̃n

)
,

(3)

where

hn = fngn (4a)

h̃n = fng̃n
√
δ0n + f̃ngn

√
δn0 + f̃ng̃n. (4b)

We remark that none of the above channel model param-
eters is known in our problem case. Note that the above
channel model works for the active IS case [8] as well
assuming that the amplifying parameter of IS has been fixed.

Moreover, denote by θn ∈ [0, 2π) the phase shift of RE n.
With the background noise Z ∼ CN (0, σ2) and the transmit
signal X ∼ CN (0, P ), the received signal Y ∈ C is

Y =

(
h0 +

N∑
n=1

hne
jθn

)
X + Z. (5)

The resulting achievable ergodic rate is given by

R = E

[
log

(
1 +

P

σ2

∣∣∣∣h0 +
N∑

n=1

hne
jθn

∣∣∣∣2
)]

, (6)

where the expectation is taken over the random NLoS
components {h̃0, f̃n, g̃n}. But the above rate expression is
difficult to tackle directly. To make it tractable, a common
idea in the existing literature [52], [58], [63]–[65] is to move

the expectation to the inside of log, thus obtaining an upper-
bound approximation of R (due to the concavity of log):

R̂ = log

(
1 +

P

σ2
· E
[∣∣∣∣h0 +

N∑
n=1

hne
jθn

∣∣∣∣2
])

≥ R. (7)

Notice that maximizing the above upper bound amounts to
maximizing the expectation of the overall channel power.
Further, each phase shift θn in practice is restricted to the
discrete set

ΦK = {ω, 2ω, . . . ,Kω}, (8)

where
ω =

2π

K
, (9)

for some given positive integer K ≥ 2. We seek the op-
timal phase shift array θ = (θ1, . . . , θN ) to maximize the
approximate ergodic rate R̂ in (7). As a result, the passive
beamforming problem can be formulated as

maximize
θ

E

[∣∣∣∣h0 +
N∑

n=1

hne
jθn

∣∣∣∣2
]

(10a)

subject to θn ∈ ΦK , n = 1, . . . , N, (10b)

where the expectation is taken over the random {h̃0, f̃n, g̃n}.
The difficulties of the above problem can be recognized
in two respects. First, the optimizing variables {θn} are
discrete. Second, the channels are unknown, i.e., {θn} must
be optimized blindly.

3 CSM ALGORITHM FOR BLIND BEAMFORMING

The goal of this section is three-fold. First, we review the ex-
isting blind beamforming algorithms in [2], [33] for the static
channels. Second, we show that these algorithms continue
to work in the fading channels. Third, most importantly, we
point out a flaw in the proofs of [2], [33] which can cause
the failure of their algorithms in the NLoS transmission case.
Although our discussion focuses on the CSM algorithm [33],
it can be immediately extended to the RFocus algorithm [2].

3.1 Existing Algorithms: RFocus [2] and CSM [33]

We temporarily assume that all the random variables
{h̃0, f̃n, g̃n} are fixed as in the previous works [2], [33]. Thus,
all the channels {h0, hn} are complex constants, but their
values are still unknown. The expectation operation E in
problem (10) can then be dropped. Let us go over how this
deterministic version of problem (10) is addressed in [33].

We use ∆n to denote the phase difference between the
direct channel h0 and the reflected channel hn:

∆n = ∠h0 − ∠hn, for n = 1, . . . , N. (11)

Clearly, for the continuous beamforming case with K → ∞,
it is optimal to align each reflected channel with the direct
channel in order to maximize the overall channel strength,
so the optimal choice of θn is

θ⋆n = ∆n. (12)

However, when K < ∞, the above solution may not be
contained in the discrete set ΦK . A simple idea is to rotate
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every hn to the closest position to h0 in the complex plane,
namely the closest point projection (CPP) method:

θCPP
n = arg min

θn∈ΦK

∣∣∣∣∣Arg

(
hne

jθn

h0

)∣∣∣∣∣ , (13)

where Arg(·) is the principal argument of a complex num-
ber. We can further find an approximation bound for the
CPP algorithm as stated in the following lemma.

Lemma 1. Suppose that the fading components {h̃0, f̃n, g̃n}
are all fixed in problem (10) so that the expectation oper-
ation E can be dropped in the optimization objective. Let
f⋆ be the global optimum of the resulting deterministic
version of problem (10). If h0 can be bounded away
from zero, then the solution of the CPP algorithm in (13)
satisfies

cos2(
π

K
) · f⋆ ≤

∣∣∣∣∣h0 +
N∑

n=1

hne
jθCPP

n

∣∣∣∣∣
2

≤ f⋆. (14)

Lemma 1 has been established in [66, Proposition 2]. Actu-
ally, when channels are known, the discrete optimization in
(10) can be optimally solved in linear time in terms of N ,
as shown in [67]; but this linear-time optimal algorithm is
irrelevant to blind beamforming, so we omit it in this paper.

Example 1. When K = 2, i.e., when each θn ∈ {0, π},
the lower bound equals zero in the worst-case scenario,
as shown in the following example. Assume that all
the magnitudes of all components |hn| are equal; as-
sume also that ∆n = π/2 − ε for n = 1, . . . , N/2
and ∆n = −π/2 + ε for n = N/2 + 1, . . . , N , where
∆n = ∠h0 − ∠hn. Let ε → 0+. According to (13), we
have θCPP

n = 0 for every n = 1, . . . , N and thus the
two groups of reflected channels cancel out. Actually,
the optimal solution in this case should be θn = 0 for
n = 1, . . . , N/2 and θn = π for n = N/2 + 1, . . . , N . But
we emphasize that the above example is a crafted case.
In most random realizations of the K = 2 case, CPP still
performs quite well, as shown in Section 5.

Notice that the CPP algorithm requires the information
of {∆n} and thus requires channel estimation. The main
result of [2], [33] is that CPP can be performed implicitly in
the absence of channel information. We focus on describing
the CSM algorithm in [33] in what follows, since the RFocus
algorithm [2] has similar steps. To start, the CSM algorithm
tries out T random samples of θ = (θ1, . . . , θN ), the tth
random sample denoted by θt = (θ1t, . . . , θNt). For the
tth random sample, we measure the corresponding received
signal power denoted by |Yt|2. Next, the T random samples
are grouped with respect to each n = 1, . . . , N and each
k = 1, . . . ,K :

Qnk = {t | θnt = kω} , (15)

i.e., Qnk is a set of indices of random samples in which the
phase shift of the nth RE equals kω. Note that the same
random sample appears in multiple Qnk’s with different
n. After obtaining all the Qnk’s, we compute the empirical
conditional average of the received signal power as

Ê
[
|Y |2 | θn = kω

]
=

1

|Qnk|
∑

t∈Qnk

|Yt|2. (16)

TABLE 1
Toy example of CSM when N = 4, K = 2, and T = 6.

t (θ1, θ2, θ3, θ4) |Y |2

1 (0, π, 0, 0) 2.8
2 (0, 0, 0, 0) 1.0
3 (π, π, π, 0) 1.5
4 (π, 0, π, π) 3.3
5 (π, π, 0, π) 0.3
6 (0, 0, π, π) 0.4

Intuitively, Ê
[
|Y |2 | θn = kω

]
characterizes the average per-

formance of letting θn = kω while the rest phase shifts are
chosen at random. We then decide each θn according to the
average performance:

θCSM
n = arg max

φ∈ΦK

Ê
[
|Y |2 | θn = φ

]
. (17)

We illustrate the above steps with the following toy exam-
ple.
Example 2. Assume that N = 4, K = 2, and T = 6. All the

random samples and their corresponding received signal
powers |Y |2 are listed in Table 1. We then compute the
empirical conditional averages with respect to θ1 = 0
and with respect to θ1 = π as

Ê
[
|Y |2 | θ1 = 0

]
=

2.8 + 1.0 + 1.4

3
= 1.4

Ê
[
|Y |2 | θ1 = π

]
=

1.5 + 3.3 + 0.3

3
= 1.7.

Thus, the CSM algorithm would let θ1 = π according to
(17). The rest phase shifts can be decided similarly. The
complete solution in this example is θ1 = π, θ2 = 0,
θ3 = π, and θ4 = 0.

We now establish the equivalence between the CPP
solution (13) and the CSM solution (17). As T → ∞,
the empirical conditional average converges to the actual
conditional expectation, i.e., the value of Ê

[
|Y |2 | θn = kω

]
converges to

E
[
|Y |2 | θn = kω

]
= 2P |h0||hn| cos(kω −∆n)

+ P
N∑

m=1,m ̸=n

|hm|2 + σ2. (18)

Evidently, in order to maximize E
[
|Y |2 | θn = kω

]
, we need

to minimize the gap between kω and ∆n. In other words,
we need to choose θn to be the point in {ω, 2ω, . . . ,Kω} that
is the closest to ∆n, namely the CPP algorithm in (13). The
above results can be immediately carried over to the RFocus
algorithm [2] by considering random samples of the ON-OFF
statuses of the passive antennas.
Remark 1. A more in-depth analysis of the CSM algorithm

is provided in [33]. It shows that the CPP solution
equals the CSM solution with high probability so long
as T = Ω(N2(logN)3). Furthermore, if the average
reflected signal power per RE is fixed, then an SNR boost
of Θ(N2) can be achieved by the CSM algorithm.

Remark 2. A common heuristic is to simply pick the best
random sample we have tested so far from the codebook,
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which amounts to the beam training method [37]–[40]
with the codewords uniformly generated in the code-
book. Nevertheless, [33] shows that the SNR boost by
this method is only Θ(N log T ). Thus, the CSM algo-
rithm outperforms the beam training method in general.

Remark 3 (Preview of Why RFocus and CSM may Fail). In
the above analysis, we have implicitly assumed that the
direct channel strength |h0| is a strictly positive number.
Now let us consider the extreme case in which |h0| = 0.
The conditional expectation of the received signal power
in (18) reduces to

E
[
|Y |2 | θn = kω

]
= P

N∑
m=1,m ̸=n

|hm|2 + σ2. (19)

Observe that the value of E
[
|Y |2 | θn = kω

]
now be-

comes a constant regardless of the choice of θn. Thus,
we can no longer decide the optimal choice of θn by
comparing the empirical conditional averages as in (17),
and consequently the CSM algorithm fails to work. A
formal analysis of this issue is presented in Section 3.3.

3.2 Extension to Fading Channels

The previous works [2], [33] verify the performance of
their blind beamforming algorithms in the context of static
channels, i.e., when the channels {h0, hn} are all fixed. Our
new result here is to show that the RFocus algorithm [2]
and the CSM algorithm [33] continue to work for the fading
channels in (2) so long as the direct channel is LoS, i.e., when
E[h0] is sufficiently large to be bounded away from zero.

For the fading channel model in (2), we define

∆n = ∠h0 − ∠hn, for n = 1, . . . , N. (20)

The conditional expectation of the received signal power
now becomes

E
[
|Y |2 | θn = φ

]
= 2P

√
γ00γ0nγn0δ00δ0nδn0

(1 + δ00)(1 + δ0n)(1 + δn0)
cos(φ−∆n) + σ2 +

P

(
γ00 +

N∑
n=1

γ0nγn0(δ0nδn0 + δ0n + δn0 + 1)

(1 + δ0n)(1 + δn0)

)
, (21)

where the expectation is taken over all random fading
components and the randomly selected θm,m ̸= n. Because
of the LoS assumption, we have E[h0] be sufficiently large
and thereby prevent the coefficient

√
γ00γ0nγn0δ00δ0nδn0

(1+δ00)(1+δ0n)(1+δn0)

from tending to zero. Following the argument in Section 3.1,
we treat E

[
|Y |2 | θn = φ

]
as a function of φ, and then find

that maximizing its value amounts to minimizing the gap
between φ and ∆n. Moreover, notice that Ê

[
|Y |2 | θn = φ

]
converges to E

[
|Y |2 | θn = φ

]
as T → ∞. Thus, the solution

by the CSM algorithm is equivalent to the solution by the
CPP algorithm:

θCPP
n = arg min

θn∈ΦK

∣∣∣∣∣Arg

(
hne

jθn

h0

)∣∣∣∣∣ , (22)

when T → ∞. The following proposition formalizes the
above result.

Proposition 1. For K ≥ 3, for any fixed ξ ∈ (0, 1), the
CSM solution θCSM in (17) equals the CPP solution θCPP

in (22) with a probability of at least 1 − ξ so long as
T = Ω(N3 logN).

Proof: Note that we would have θCSM
n = θCPP

n when
Ê
[
|Y |2 | θn = kω

]
and E

[
|Y |2 | θn = kω

]
are sufficiently

close to each other for all k. Let χn1 and χn2 be the
largest and the second-largest values of cos (kω −∆n), re-
spectively, for each k = 1, . . . ,K ; the difference between
χn1 and χn2 is denoted by ϵn = χn1 − χn2. The above
observation can be formulated as:∣∣∣Ê [|Y |2 | θn = kω

]
− E

[
|Y |2 | θn = kω

]∣∣∣ < 2βPϵn (23)

holds for every k, where

β =

√
γ00γ0nγn0δ00δ0nδn0

(1 + δ00)(1 + δ0n)(1 + δn0)
. (24)

In the remainder of the proof, we discuss in what regime of
(N,T ) the condition (23) holds for all n = 1, . . . , N .

Without loss of generality, we focus on a particular (n, k)
and its corresponding conditional subset Qnk. Let Tnk be the
cardinality of Qnk. With each θnt drawn from ΦK uniformly
and independently, we have

Tnk =
T

K
with high probability. (25)

Notice that the received signal Y can be formulated as

Y = Y + Ỹ + Z, (26)

where

Y =

(√
γ00δ00
1 + δ00

h0 +
N∑

n=1

√
γ0nγn0δ0nδn0

(1 + δ0n)(1 + δn0)
hne

jθn

)
X

Ỹ =

(√
γ00

1 + δ00
h̃0 +

N∑
n=1

√
γ0nγn0

(1 + δ0n)(1 + δn0)
h̃ne

jθn

)
X,

are the parts of the received signal related to the LoS
components and the NLoS components, respectively.

To ease notation in the further discussion, we define a
sequence of new variables:

ηnk = E
[∣∣Y ∣∣2 | θn = kω

]
(28)

η̂nk =
1

Tnk

∑
t∈Qnk

∣∣Y t

∣∣2 (29)

σ2
nk = E

[∣∣∣Ỹ + Z
∣∣∣2 | θn = kω

]
(30)

σ̂2
nk =

1

Tnk

∑
t∈Qnk

∣∣∣Ỹt + Zt

∣∣∣2 (31)

δnk =
2

Tnk

∑
t∈Qnk

Re
{
Y

H
t (Ỹt + Zt)

}
. (32)

It can be shown that

E
[
|Y |2 | θn = kω

]
= ηnk + σ2

nk (33a)

Ê
[
|Y |2 | θn = kω

]
= η̂nk + σ̂2

nk + δnk. (33b)

Now, for each pair (n, k), we aim to bound the probability
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of the error event

Enk =
{∣∣∣Ê [|Y |2 | θn = kω

]
− E

[
|Y |2 | θn = kω

]∣∣∣ ≥ ϵ0
}

where the constant ϵ0 = minn=1,...,N {2βϵn}. We show that

P {Enk} = P
{∣∣η̂nk + σ̂2

nk + δnk − ηnk − σ2
nk

∣∣ ≥ ϵ0
}

(a)

≤ P
{
|η̂nk − ηnk| ≥

ϵ0
3

}
+ P

{∣∣σ̂2
nk − σ2

nk

∣∣ ≥ ϵ0
3

}
+ P

{
|δnk| ≥

ϵ0
3

}
, (34)

where (a) follows by the fact that |a1+a2+a3| ≥ ϵ0 implies
that at least one |ai| ≥ ϵ0/3.

We now wish to quantify the upper bound in (34) in
closed form. Toward this end, let us consider the following
four error events parameterized by q > 0 and ϵ > 0:

Enk,1(q) = {ηnk ≥ qPν} (35a)
Enk,2(ϵ) = {|η̂nk − ηnk| ≥ ϵ} (35b)

Enk,3(ϵ) =
{∣∣σ̂2

nk − σ2
nk

∣∣ ≥ ϵ
}

(35c)
Enk,4(ϵ) = {|δnk| ≥ ϵ} , (35d)

where

ν =
γ00δ00
1 + δ00

+
N∑

n=1

γ0nγn0δ0nδn0
(1 + δ0n)(1 + δn0)

. (36)

The probabilities of the above error events can be upper
bounded as

P {Enk,1(q)}
(a)

≤ 4e−q/4, (37a)

P
{
Enk,2(ϵ) | Ec

nk,1(q)
} (b)

≤ 2 exp

(
− 2ϵ2Tnk

q2P 2ν2

)
, (37b)

P {Enk,3(ϵ)}
(c)

≤ σ̃2

ϵ2Tnk
, (37c)

P
{
Enk,4(ϵ) | Ec

nk,1(q)
} (d)

≤ 2qPνσ̃

ϵ2Tnk
, (37d)

where

σ̃ = P

(
N∑

n=1

γ0nγn0(δ0n + δn0 + 1)

(1 + δ0n)(1 + δn0)
+

γ00
1 + δ00

)
+ σ2. (38)

In the above bounds, (a) follows by [33, Lemma 2], (b)
follows by Hoeffding’s inequality, and (c) and (d) follow
by Chebyshev’s inequality.

Putting (37a)–(37d) together, we then arrive at a closed-
form upper bound on the original error probability as

P {Enk}

≤ P
{
Enk,2

(ϵ0
3

)}
+ P

{
Enk,3

(ϵ0
3

)}
+ P

{
Enk,4

(ϵ0
3

)}
≤ P

{
Enk,2

(ϵ0
3

) ∣∣∣ Ec
nk,1(q)

}
+ P

{
Enk,3

(ϵ0
3

) ∣∣∣ Ec
nk,1(q)

}
+ P

{
Enk,4

(ϵ0
3

)}
+ 2× P {Enk,1(q)}

≤ 2 exp

(
− 2ϵ20T

9q2P 2ν2K

)
+

9σ̃2K

ϵ20T
+

18qPνσ̃K

ϵ20T
+ 8e−q/4.

(39)

To further obtain the regime of (N,T ) within which the
condition (23) holds for all n = 1, . . . , N , we now consider
the overall error event E0 =

⋃
(n,k) Enk, the probability of

which can be bounded by the union bound as

P {E0} ≤
N∑

n=1

K∑
k=1

P{Enk}

≤ 2NK exp

(
− 2ϵ20T

9q2P 2ν2K

)
+

9σ̃2NK2

ϵ20T

+
18qPνσ̃NK2

ϵ20T
+ 8NKe−q/4.

In the meanwhile, for any fixed 0 < ξ < 1 and any 0 < p0 <
ξ/4, we have

2NK exp

(
− 2ϵ20T

9q2P 2ν2K

)
≤ p0 if T = Ω

(
N2q2 logN

)
,

(40a)
9σ̃2NK2

ϵ20T
≤ p0 if T = Ω(N3), (40b)

18qPνσ̃NK2

ϵ20T
≤ p0 if T = Ω

(
N3q

)
, (40c)

8NKe−q/4 ≤ p0 if q = Ω(logN). (40d)

Because N3 logN > N2(logN)3, after combining the
above result, we obtain that P {E0} < ξ whenever T =
Ω(N3 logN). Consequently, for the fading channel case,
we have P

{
θCSM = θCPP

}
≥ 1 − ξ whenever T =

Ω(N3 logN). The proof is then completed.
With the above result, we then extend the result of

Lemma 1 to the CSM algorithm for the fading channel case
as follows:

Proposition 2. If E[h0] can be bounded away from zero, then
the solution of the CSM algorithm in (17) satisfies

(1− ξ) cos2(
π

K
) · f⋆ ≤ E

[∣∣∣∣h0 +
N∑

n=1

hne
jθCSM

n

∣∣∣∣2] ≤ f⋆

(41)
for any fixed ξ ∈ (0, 1) so long as T = Ω(N3 logN),
where f⋆ represents the global optimum of problem (10).

Proof: The upper bound is evident. We focus on
establishing the lower bound. First, we have

f⋆ ≤
(√

γ00δ00
1 + δ00

+
N∑

n=1

√
γ0nγn0δ0nδn0

(1 + δ0n)(1 + δn0)

)2

+
γ00

1 + δ00
+

N∑
n=1

γ0nγn0(δ0n + δn0 + 1)

(1 + δ0n)(1 + δn0)
(42)

by assuming that every hn has been aligned perfectly with
h0. It can be further shown that the CPP solution satisfies

E

[∣∣∣∣h0 +
N∑

n=1

hne
jθCPP

n

∣∣∣∣2
]

=

∣∣∣∣∣
√

γ00δ00
1 + δ00

+
N∑

n=1

√
γ0nγn0δ0nδn0

(1 + δ0n)(1 + δn0)
ej(θ

CPP
n −∆n)

∣∣∣∣∣
2

+
γ00

1 + δ00
+

N∑
n=1

γ0nγn0(δ0n + δn0 + 1)

(1 + δ0n)(1 + δn0)
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≥ cos2(
π

K
) ·
(√

γ00δ00
1 + δ00

+
N∑

n=1

√
γ0nγn0δ0nδn0

(1 + δ0n)(1 + δn0)

)2

+ cos2(
π

K
) ·
(

γ00
1 + δ00

+
N∑

n=1

γ0nγn0(δ0n + δn0 + 1)

(1 + δ0n)(1 + δn0)

)
≥ cos2(

π

K
) · f⋆. (43)

Finally, we show that

E

[∣∣∣∣h0 +
N∑

n=1

hne
jθCSM

n

∣∣∣∣2
]

≥ P
{
θCSM = θCPP

}
× E

[∣∣∣∣h0 +
N∑

n=1

hne
jθCPP

n

∣∣∣∣2
]

(a)

≥ (1− ξ) · E
[∣∣∣∣h0 +

N∑
n=1

hne
jθCPP

n

∣∣∣∣2
]

(b)

≥ (1− ξ) cos2(
π

K
) · f⋆. (44)

where (a) follows by Proposition 1, (b) follows by the
inequality in (43).

The above result can be readily extended for the RFocus
algorithm. We remark that the LoS assumption is critical
to the above conclusion, without which the existing beam-
forming algorithms may fail to work, as discussed in the
sequel.

3.3 Failure of RFocus [2] and CSM [33]

We now point out a fundamental flaw in the existing blind
beamforming algorithms. Let us begin with the extreme case
where E[h0] = 0. Notice that E[h0] = 0 implies either γ00 =
0 or δ00 = 0. Consequently, the conditional expectation in
(21) reduces to

E
[
|Y |2 | θn = φ

]
= P

N∑
n=1

γ0nγn0(δ0nδn0 + δ0n + δn0 + 1)

(1 + δ0n)(1 + δn0)

+ σ2 + Pγ00, (45)

which does not depend on the choice of θn. Thus, even if
the Ê

[
|Y |2 | θn = kω

]
converges to E

[
|Y |2 | θn = kω

]
, we

cannot decide each θn according to the CSM operation in
(17). But what if E[h0] tends to zero? To see the answer, we
now expand the empirical conditional average in (16) as

Ê
[
|Y |2 | θn = φ

]
= 2Pβ1 cos(φ−∆n) +

7∑
i=1

Ci, (46)

where

C1 =
2P

|Qnk|
∑

t∈Qnk

N∑
n=0

|hnt|2

C2 =
2P

|Qnk|
∑

t∈Qnk

Re
{
β2h

H

0 h̃nt + β3h̃
H
0thn + β4h̃

H
0th̃nt

}

C3 =
2P

|Qnk|
∑

t∈Qnk

Re

{
hH
0t

N∑
m=1,m ̸=n

hmte
jθmt

}

C4 =
2P

|Qnk|
∑

t∈Qnk

Re

{
hH
nt

N∑
m=1,m ̸=n

hmte
j(θmt−φ)

}

C5 =
2P

|Qnk|
∑

t∈Qnk

Re

{
N∑

a=1

N∑
b=1,b̸=a

hath
H
bte

j(θat−θbt)

}

C6 =
2
√
P

|Qnk|
∑

t∈Qnk

Re

{
N∑

n=0

hnte
jθntZH

t

}

C7 =
1

|Qnk|
∑

t∈Qnk

|Zt|2

β1 =

√
γ00γ0nγn0δ00δ0nδn0

(1 + δ00)(1 + δ0n)(1 + δn0)

β2 =

√
γ00γ0nγn0δ00

(1 + δ00)(1 + δ0n)(1 + δn0)

β3 =

√
γ00γ0nγn0δ0nδn0

(1 + δ00)(1 + δ0n)(1 + δn0)

β4 =

√
γ00γ0nγn0

(1 + δ00)(1 + δ0n)(1 + δn0)
.

Recall that the main idea of the CSM algorithm is to
mimic the CPP solution. Toward this end, it requires that
Ê
[
|Y |2 | θn = θCPP

n

]
> Ê

[
|Y |2 | θn = φ

]
holds for any φ ̸=

θCPP
n since we choose each θn to maximize the empirical

conditional average as in (17); it is sufficient to require that∣∣∣Ê [|Y |2 | θn = φ
]
− E

[
|Y |2 | θn = φ

]∣∣∣ < 2β1ϵn, (47)

where ϵn > 0 is the difference between the highest value
and the second highest value of cos (φ−∆n) across all
possible φ ∈ ΦK . Intuitively speaking, if each empirical
conditional average is close to the actual conditional ex-
pectation, then we will not get confused with the actual
θn that maximizes E

[
|Y |2 | θn = φ

]
. Based on the above

observation, we bound the error probability as

P
{
θCSM ̸= θCPP

}
(a)

≤
N∑

n=1

P
{
θCSM
n ̸= θCPP

n

}
≤

N∑
n=1

P
{∣∣∣Ê [|Y |2|θn = φ

]
− E

[
|Y |2|θn = φ

] ∣∣∣ > 2β1ϵn
}

(b)

≤
N∑

n=1

Var(
∑7

i=1 Ci)

4 |Qnk|β2
1ϵ

2
n

(c)
≃

N∑
n=1

K(1 + δ00)(1 + δ0n)(1 + δn0)Var(
∑7

i=1 Ci)

4Tγ00γ0nγn0δ00δ0nδn0ϵ2n
, (48)

where (a) follows by the union bound, (b) follows by
Chebyshev’s inequality, and (c) follows since |Qnk| ≈ T/K .

The above upper bound suggests that just letting T → ∞
is not enough for the CSM algorithm to work in the NLoS
direct channel case. Rather, it requires

T = Ω

(
1

γ00δ00

)
. (49)

In the next section, we propose an improved version of CSM
algorithm called Grouped Conditional Sample Mean (GCSM),
which (i) still works when E[h0] = 0 and (ii) requires much
fewer random samples than (49) when E[h0] → 0.

Remark 4. The above result implies that we can tell the
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Fig. 2. An example of the alternating CSM algorithm with the REs
divided into two groups. Assume that N = 4 and the channels are
[h0, h1, h2, h3, h4] = [0, 1.7646 + 2.1012j, 0.2792 − 1.6644j, 0.7178 +
3.1842j, 0.6117− 2.2282j]× 10−5; the reflected channels are grouped
as SI = {h1, h4} and Sc

I = {h2, h3}. We assume that T → ∞ and
thus each empirical conditional average has converged to the actual
conditional expectation.

status (LoS or NLoS) of the direct channel without CSI.
We just compare the values of Ê

[
|Y |2 | θn = φ

]
with

different φ; the direct channel is NLoS if these empirical
conditional averages are close to each other, and is LoS
otherwise.

4 ADAPTIVE BLIND BEAMFORMING BY GROUPING

This section introduces the main result of this paper, an
adaptive blind beamforming algorithm that works for all
channel cases regardless of the strength of the direct chan-
nel. Furthermore, we discuss how the proposed algorithm
can be extended to multiple users.

4.1 Grouped Conditional Sample Mean (GCSM)

Since |E[h0]| being close to zero is the cause of the failure
of the existing blind beamforming algorithms as stated in
Section 3.3, a natural idea is to combine some reflected
channels with h0 so that the new virtual direct channel is
sufficiently strong. Following this idea, a naive algorithm
is to divide the REs into two groups and perform CSM
algorithm between the two groups alternatingly. To be more
specific, in each iteration, we optimize θn’s for the REs in
one group by CSM while holding the rest phase shifts fixed.
But the performance of this alternating CSM algorithm
cannot be justified, as illustrated by a counterexample in
Fig. 2. Observe that the alternating CSM algorithm cannot
guarantee improvement after each iteration.

Rather interestingly, it turns out that the performance
can be guaranteed if the REs are divided into three groups,
as explained intuitively in what follows. First, divide the N
REs randomly into two groups SI and Sc

I . Fixing the phase
shifts of the REs in SI, we optimize θn for each RE n ∈ Sc

I

by CSM. In other words, the reflected channels associated
with SI are currently combined with the original direct

(a) First Stage (b) Second Stage

Fig. 3. Visualization of the procedure of Algorithm 1.

Algorithm 1 Grouped Conditional Sample Mean (GCSM)
1: input: ΦK and N .
2: Divide the reflected channels into two groups SI and Sc

I .
3: for t = 1, 2, . . . , T1 do
4: Fix SI and generate each θnt with n ∈ Sc

I at random.
5: Measure received signal power |Yt|2 under θt.
6: end for
7: 1st round of CSM: Compute Ê

[
|Y |2 | θn = kω

]
in (16)

and decide θn for each RE in Sc
I as in (17).

8: Further divide Sc
I into SII and SIII according to (50).

9: for t = 1, 2, . . . , T2 do
10: Fix SII and generate each θnt, n ∈ SI∪SIII at random.
11: Measure received signal power |Yt|2 under θt.
12: end for
13: 2nd round of CSM: Compute Ê

[
|Y |2 | θn = kω

]
in (16)

and decide θn for each RE in SI and SIII as in (17);

channel h0 to form a new direct channel denoted by hI;
we write E[hI] as hI. The resulting hI would be sufficiently
strong, so the CSM algorithm now works for optimizing
the phase shifts of the REs in Sc

I . Thus, according to the
former discussion in Section 3.2, hn of each RE in Sc

I would
be rotated by CSM to the closest possible position to hI.
In particular, notice that the rotated hn, which is hne

jθn ,
must lie in two sectors (each of angel ω/2) adjacent to hI, as
illustrated in Fig. 3(a). The above steps are referred to as the
first stage of our proposed algorithm.

We now enter the second stage of the proposed algo-
rithm. To start with, we further split Sc

I into two sub-
groups. Recall that hne

jθn of each RE n ∈ Sc
I must lie

in either the upper sector or the lower sector adjacent
to hI. As illustrated in Fig. 3(b), for each RE n ∈ Sc

I ,
we put it in group SII if its current hne

jθn lies in the
upper sector, and put it in group SIII if its current hne

jθn

lies in the lower sector. Nevertheless, since {hn} are un-
known, we do not know the positions of {hne

jθn} either,
so how do we determine SII and SIII in practice? To
find the answer, the key observation is that hne

j(θn−ω) is
closer to hI than hne

j(θn+ω) is if hne
jθn lies in the upper

sector, so Ê
[
|Y |2 | θn = φ− ω

]
> Ê

[
|Y |2 | θn = φ+ ω

]
.

Likewise, we would have Ê
[
|Y |2 | θn = φ− ω

]
<

Ê
[
|Y |2 | θn = φ+ ω

]
if hne

jθn lies in the lower sector.
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Hence, we can decide the group for each n ∈ Sc
I as

Ê[|Y |2|θn = φ+ ω]
SII

≶
SIII

Ê[|Y |2|θn = φ− ω]. (50)

After deciding the groups SII and SIII, we further denote by
hII the superposition of all those hne

jθn ’s associated with
SII, and write hII = E[hII]. Next, we fix the phase shifts of
those REs in SII, and optimize the phase shifts for the rest
REs (which are contained in SI∪SIII) by the CSM algorithm.
Thus, during the process of CSM this time, we treat the
combination of hII and h0 as the new virtual direct channel.
The second stage is then completed. The whole algorithm
now ends. We summarize the above steps in Algorithm 1.
The computational complexity of the proposed algorithm is
O(N(T + K)). Algorithm 1 has provable performance, as
stated in the following proposition.

Proposition 3. For any fixed ξ ∈ (0, 1), the solution
θGCSM by Algorithm 1 with T1 = Ω(N3 logN) and
T2 = Ω(N3 logN) satisfies∣∣∣∠hn + θGCSM

n − ∠hn′ − θGCSM
n′

∣∣∣ ≤ ω (51)

for any two n, n′ ∈ {1, 2, . . . , N} with a probability of
at least (1 − ξ)2, i.e., the LoS components of reflected
channels are clustered within a sector of angle ω, so
Algorithm 1 can guarantee that

(1−ξ)2 cos2(
π

K
)·f⋆ ≤ E

[∣∣∣∣h0 +
N∑

n=1

hne
jθGCSM

n

∣∣∣∣2
]
≤ f⋆,

(52)
where f⋆ represents the global optimum of problem (10).

Proof: We start by reviewing the procedure of Al-
gorithm 1 briefly. The algorithm comprises two stages. At
the first stage, we fix θn for those hn ∈ SI, and optimize
θn for those hn ∈ Sc

I by the CSM algorithm. Note that
T1 = Ω(N3 logN) suggests T1 = Ω(|Sc

I |3 log |Sc
I |),so the

CSM algorithm would rotate hn of each hn in Sc
I to the

closest possible position to hI with a probability of at least
1−ξ according to Proposition 1; Fig. 3(a) illustrates the result
of the first stage. Subsequently, at the second stage, we fix θn
for those hn ∈ SII, and optimize θn for those hn ∈ SI ∪ SIII

by the CSM algorithm. Similarly, with T2 = Ω(N3 logN)
suggesting T2 = Ω(|SI ∪ SIII|3 log |SI ∪ SIII|), Proposition
1 guarantees that the CSM algorithm would rotate hn of
each hn ∈ SI ∪ SIII to the closest possible position to hII

with a probability of at least 1− ξ, as illustrated in Fig. 3(b).
Combining the results of two stages, we can guarantee that
all the LoS components hn of the reflected channels are
rotated to within a section of angle ω—which is denoted by
the dashed sector in Fig. 3(b), with a probability of at least
(1− ξ)2. We then establish (51). Equipped with (51), we can
readily obtain (52) by following the proof of Proposition 2.

Remark 5 (Why not divide RE into more groups?). First of
all, we would like to clarify that the purpose of dividing
the REs into groups is to address the NLoS issue, but
it sacrifices the RE coordination. In other words, if the
LoS channel is already sufficiently strong, then it is
better to put all the REs in the same group. This can be
seen from the optimization viewpoint: when maximizing

f(θ1, . . . , θN ), the optimal method is to optimize all
the variables (θ1, . . . , θN ) simultaneously, rather than
individually, otherwise it is very likely to get stuck at
a premature local optimum. Since using more groups
is not a good thing for the RE coordination, why don’t
we just use two groups? The problem with using two
groups is that the resulting GCSM algorithm cannot
guarantee convergence anymore as shown later in Fig. 2
in Section 5. In a nutshell, we suggest dividing the REs
into three groups because this is the smallest number of
groups that ensures the convergence of GCSM. We use
simulations to verify the above argument in Section 5.

4.2 Extension to Multi-User Case
We further propose an extension of blind beamforming for
multiple users. Consider an IS-assisted broadcast network
[68] where a single-antenna transmitter sends a common
message to M ≥ 2 single-antenna receivers. We denote by
hm
0 the direct channel from the transmitter to the mth user,

and denote by hm
n the reflected channel associated with the

mth user and the nth RE. Rician fading is assumed as in (2).
Let σ2

m be the background noise power level at the mth user.
We seek the optimal passive beamformer θ = (θ1, . . . , θN )
that maximizes the worst SNR across the users, i.e.,

maximize
θ

min
m

E

 P

σ2
m

∣∣∣∣∣hm
0 +

N∑
n=1

hm
n ejθn

∣∣∣∣∣
2
 (53a)

subject to θn ∈ ΦK , n = 1, . . . , N, (53b)

where the expectation is taken over the fading channels.
To account for multiple users, we use the following

utility in place of the received signal power for blind beam-
forming:

Ut = min
m

{
|Y m

t |2 /σ2
m

}
. (54)

Accordingly, the empirical conditional average is now com-
puted as

Ê [U | θn = kω] =
1

|Qnk|
∑

t∈Qnk

Ut. (55)

For the utility-based CSM, each θn is chosen to maximize
the empirical conditional average of the utility:

θCSM
n = arg max

φ∈ΦK

Ê [U | θn = φ] . (56)

The utility-based GCSM for multiple users can be obtained
similarly.

5 NUMERICAL RESULTS

5.1 Field Tests
We carry out the field test in an outdoor environment as
shown in Fig. 4. Throughout the field test, the transmit
power is fixed to be −10 dBm and the transmission takes
place at 3.5 GHz. The spectrum bandwidth equals 125
KHz, and the modulation scheme is quadrature amplitude
modulation (QAM). The SNR is measured 100 times and
then averaged out. The IS prototype machine consists of
400 REs (i.e., N = 400) and provides 4 possible phase shifts
{0, π/2, π, 3π/2} for each RE. For LoS direct channel case,
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Fig. 4. Our field test uses an IS that comprises 400 REs and provides 4 phase shift options {0, π/2, π, 3π/2} for each RE. For the LoS case,
omnidirectional antennas are deployed at all devices; for the NLoS case, directional antennas are used to prevent direct signal propagation from
the transmitter to each receiver.

Fig. 5. The IS-assisted downlink network considered in our simulations. One or more receivers are randomly located within the shaded area.

omnidirectional antennas are deployed at both transmitter
and receiver; for NLoS direct channel case, directional an-
tennas are deployed to prevent direct signal propagation
from transmitter to receiver. Aside from the CSM algorithm
in [33] and the proposed GCSM algorithm in Algorithm
1, the following methods are included in field tests as
benchmarks:

• Without IS: IS is removed from the network.
• Zero Phase Shifts (ZPS): Fix all phase shifts to be zero.
• Beam Training [33]: Try out T random samples of the

phase shift array θ = (θ1, . . . , θN ) and choose the
best.

Notice that beam training, CSM, and GCSM all require
random samples of θ. We let T = 1000 and T1 = T2 = 500.

Table 2 summarizes the performance of the different
IS beamforming algorithms. Observe that the ZPS method
increases SNR significantly by 23.8 dB for the NLoS direct
channel case even with the phase shifts all fixed at zero,
whereas its gain is marginal (only 1.8 dB) for the LoS case.
Observe also that beam training increases SNR further by
about 8 dB as compared to ZPS, at the cost of 1000 random
samples. Thus, the deployment of IS can already bring
considerable gain even without any phase shift optimization
if the original channel is too bad.

But the much higher gain can be reaped by using more
sophisticated algorithms like CSM and GCSM. The table
shows that CSM can further improve upon beam training
by around 7 dB in the LoS case; we remark that CSM uses
the same number of random samples as beam training does,
and that its computational complexity is not higher. Notice
that the gap between CSM and GCSM is slim in the LoS case
as expected. But when it comes to the NLoS case, GCSM
starts to outperform: SNR of GCSM is 2.4 dB higher than
that of CSM. We also notice that the advantage of CSM over
beam training shrinks in the NLoS case. But since the two
algorithms require similar sampling and computation costs,
the former is still preferable in practice.

Table 3 further compares the performance of the different
IS beamforming algorithms in a broadcast network with
M = 3 users as shown in Fig. 4. The deployment of the
IS already increases the worst SNR among three users by
1.3 dB for the LoS direct channel case and by 2.5 dB for the
NLoS case. The best performance in the LoS case is achieved
by CSM, but it is only slightly better than GCSM. When it
comes to the NLoS case, GCSM becomes the best method.

5.2 Simulation Tests
We now consider simulations to validate the performance
of the proposed blind beamforming method under more
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TABLE 2
SNR Performance (Measured in dB) in the Single-User Case

LoS NLoS
Method SNR Boost SNR Boost
Without IS 8.5 0.0 3.0 0.0
ZPS 10.3 1.8 26.8 23.8
Beam Training 17.7 9.2 35.7 32.7
CSM 24.4 15.9 29.2 36.7
GCSM 24.8 16.3 42.1 39.1

TABLE 3
Worst-SNR Performance (measured in dB) in the Multi-User

Case

LoS NLoS
Method SNR Boost SNR Boost
Without IS 4.8 0.0 3.4 0.0
ZPS 6.1 1.3 5.9 2.5
Beam Training 9.4 4.4 8.1 4.7
CSM 11.0 6.2 8.4 5.0
GCSM 10.8 6.0 9.3 5.9

complex network settings, i.e., with more than one user
and with many more REs on each IS. Our simulations are
conducted on a computer with a 4.6 GHz i5-11500 CPU and
16 GB RAM.

As shown in Fig. 5, we consider an IS-assisted down-
link transmission system. The REs are arranged as a half-
wavelength spaced uniform linear array (ULA); the carrier
frequency equals 2.6 GHz, so the wavelength λ ≈ 10 cm
and thus the RE spacing equals 5 cm. We then specify the
model parameters in Section 2. The pathloss factors follow
[69], which are generated as

−10× log10 γ00 = 32.6 + 36.7 log10(d00) (57a)
−10× log10 γ0n = 30 + 22 log10(d0n) (57b)
−10× log10 γn0 = 30 + 22 log10(dn0), (57c)

where d00, d0n, and dn0 are the corresponding distance
in meters. Moreover, the normalized fixed components are
generated as

h0 = exp

(
−j

2πd00
λ

)
(58a)

fn = exp

(
−j

2πd0n
λ

)
(58b)

gn = exp

(
−j

2πdn0
λ

)
, (58c)

Regarding the Rician factors, we let δ0n = δn0 = 10; the
value of δ00 depends on the direct channel status—let δ00 =
10 for the LoS case and let δ00 = 0 for the NLoS case.

The rest parameters are set as follows unless otherwise
stated. The transmit power level P = 20 dBm, and the
background noise power level σ2 = −90 dBm. Assume
that the IS has N = 100 REs; but we will test different
values of N later on. The number of phase shift choices
K is fixed to be 4. The sample size T = 1000 by default;

Fig. 6. CDF of ergodic rates in the LoS case.

Fig. 7. CDF of ergodic rates in the NLoS case.

but we will change T to see how it impacts the performance
of blind beamforming. We evaluate the ergodic data rate by
averaging out 10000 realizations of fading channels.

Aside from CSM, GCSM, and beam training (see the
previous subsection), the following baseline methods are
considered:

• Perfect CSI: Perform the closest point projection in
(13) with perfectly known CSI; we remark that CSM
or GCSM converges to this scheme if T → ∞.

• Estimated CSI: Follow the above baseline method
except that CSI is estimated by the DFT method [70].

Let us begin with the single-user case. The resulting cu-
mulative distributions (CDFs) of ergodic data rates achieved
by the different algorithms in the LoS direct channel case
are displayed in Fig. 6. It can be seen that the proposed
blind beamforming method CSM outperforms the estimated
CSI method and the beam training method significantly.
For instance, CSM improves upon beam training by about
30% and upon GCSM by about 90% at the 50th percentile.
Observe that CSM and GCSM yield similar performance for
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Fig. 8. CDF of ergodic rates in the LoS case with interference.

Fig. 9. CDF of ergodic rates in the NLoS case with interference.

the LoS case in Fig. 6. By contrast, as shown in Fig. 7, GCSM
is far superior to CSM when the direct channel becomes
NLoS. Actually, CSM is the worst among all competitor
algorithms in the NLoS case. Fig. 6 and Fig. 7 also show
that GCSM is quite close to perfect CSI (which amounts to
GCSM with infinitely many samples); thus, using merely
T = 1000 samples is good enough in this case.

Moreover, Fig. 8 and Fig. 9 show the performance of
different algorithms for the single-user case in the presence
of co-channel interference. Specifically, an interfering BS has
been placed at the position (150,−200, 20). It can be seen
that the achieved ergodic rate of all algorithms decreases in
both LoS and NLoS cases compared to the system without
interference. It can also be seen that the performance gap
between the Estimated CSI and the proposed blind beam-
forming algorithms narrows. Notably, in the LoS scenario,
GCSM exhibits better performance than CSM, indicating
that GCSM is more robust in the presence of interference.
Fig. 10 and Fig. 11 further show the performance of differ-
ent algorithms in the binary beamforming case. It can be
observed that the proposed algorithm still performs quite

Fig. 10. CDF of ergodic rates in the LoS case when K = 2.

Fig. 11. CDF of ergodic rates in the NLoS case when K = 2.

well.
It is worthwhile to look into the NLoS case more closely

by comparing the phase shift decisions of the different
methods. Fig. 12 shows how the reflected channels are
rotated in the complex plane by the phase shifts of the
different methods. The results here are consistent with
what we have observed in Fig. 7. The perfect CSI method
renders the reflected channels most clustered and hence
yields the highest SNR boost. GCSM with T = 1000 also
leads to most channels being clustered within an angle of
π/2, albeit a few reflected channels deviate from the main
beam because of the limited samples. In comparison, the
estimated CSI method results in the reflected channels being
more dispersed, and accordingly its performance is indeed
worse than the previous two methods. Notably, CSM has
the reflected channels uniformly distributed, so it ends up
with the worst performance.

We further consider how the SNR boost by blind beam-
forming scales with the number of REs N . The receiver
position is now fixed at the origin point as shown in Fig.
5. Fig. 13 compares the SNR boost versus N performance
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Fig. 12. The phase shifted channels hnejθn in the complex plane by the different IS beamforming methods.

Fig. 13. SNR boost vs. N in the LoS case.

in the LoS case; we test beam training as well as CSM
with different T values. In particular, we remark that CSM
with T → ∞ is equivalent to the perfect CSI method. As
shown in Fig. 13, the SNR boost brought by beam training
is approximately linear in N , while the rest algorithms
yield faster growths of SNR boost in N—which are quasi-
quadratic. Actually, with T = KN2, CSM can almost reach
its ideal status with infinitely many samples. Moreover, we
can make a similar observation about the NLoS case from
Fig. 14. We would like to take a closer look at the effect of
different group schemes on the performance of the proposed
GCSM algorithm. As shown in Fig. 15 and Fig. 16, the
performance of GCSM degrades as the number of groups
increases.

Finally, we compare the different algorithms in a broad-
cast network. The locations of M = 5 users are randomly
generated within the shaded region shown in Fig. 5. For
both perfect CSI and estimated CSI, SDR is used to optimize
the phase shift array θ. As shown in Fig. 17, the proposed
utility-based GCSM method outperforms estimated CSI and
beam training significantly in terms of the minimum ergodic
data rates when all direct channels are LoS. For instance,
utility-based GCSM improves upon beam training by about
52% and upon estimated CSI by about 33% at the 50th
percentile. Notice that utility-based GCSM yields a similar
performance as utility-based CSM, indicating that it can also
work well in the LoS case.

Fig. 14. SNR boost vs. N in the NLoS case.

Fig. 15. CDF of ergodic rates vs. number of groups in the LoS case.

But when all direct channels are NLoS, the performance
of all methods becomes worse. Observe that utility-based
GCSM now outperforms the utility-based CSM. Observe
also that the utility-based GCSM and the channel estimation
based method yield similar performance in the NLoS case,
whereas the former outperforms the latter significantly in
the LoS case as formerly shown in Fig. 17. However, we
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Fig. 16. CDF of ergodic rates vs. number of groups in the NLoS case.

Fig. 17. CDF of minimum rate in the LoS broadcast network.

argue that the proposed blind beamforming scheme can still
be preferable to the channel estimation method even if they
yield similar optimization performance, for two reasons.
First, the computation burden of the proposed method is
much smaller, as shown in Table 4. Second, we remark that
the channel estimation approach may not fit in the current
network protocol and hardware. On the network protocol
side, the channel estimation methods require the third-party
intelligent surface to read the received symbol Y ∈ C from
the communication chip of the receiver device, but this is not
permitted in the current network protocol. On the hardware
side, the existing intelligent surface prototype machines
only support low-resolution phase shifting, e.g., 0 or π on
each reflected element, but the channel estimation methods
in the literature mostly require far more complicated phase
shift settings, e.g., phase shifting according to the DFT ma-
trix. As such, the existing prototypes of intelligent surface
[2], [30]–[32] seldom adopt channel estimation.

Fig. 18. CDF of minimum rate in the NLoS broadcast network.

TABLE 4
Running Time in the Broadcast Case

Method Running Time (second)
Perfect CSI 1.29
Estimated CSI 1.90
Utility-based CSM 0.11
Utility-based GCSM 0.16
Beam Training 0.09

6 CONCLUSION

This work advocates a blind beamforming approach to the
phase shift optimization problem of IS without channel ac-
quisition. Although blind beamforming has been considered
in the recent works [2], [33], their discussions are limited to
fixed channels, while this work extends blind beamforming
to fading channels. More importantly, there is a subtle issue
in [2], [33] that can completely jeopardize the existing RFo-
cus algorithm and CSM algorithm when they are applied
to the NLoS transmission case. To address this issue, we
suggest dividing all the REs into three groups and perform-
ing blind beamforming for them in an adaptive fashion.
Furthermore, we extend the proposed algorithm to multiple
users in a broadcast network. All the above results are
numerically verified in the field tests and simulations. The
proposed adaptive blind beamforming algorithm enables
a fast configuration of IS without modifying the current
network protocol, while not compromising the performance
gain of the deployed IS.
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