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Abstract—Intelligent reflecting surface (IRS) is an emerging
technology to enhance spatial multiplexing in wireless networks.
This letter considers the discrete passive beamforming design for
IRS in order to maximize the minimum signal-to-interference-
plus-noise ratio (SINR) among multiple users in an IRS-assisted
downlink network. The main design difficulty lies in the dis-
crete phase-shift constraint. Differing from most existing works,
this letter advocates a convex-hull relaxation of the discrete
constraints which leads to a continuous reformulated problem
equivalent to the original discrete problem. This letter further
proposes an efficient alternating projection/proximal gradient de-
scent and ascent algorithm for solving the reformulated problem.
Simulation results show that the proposed algorithm outperforms
the state-of-the-art methods significantly.

Index Terms—Convex-hull relaxation, discrete passive beam-
forming, intelligent reflecting surface (IRS).

I. INTRODUCTION

INTELLIGENT reflecting surface (IRS) is an emerging

wireless technology that aims to boost signal reception by

coordinating the phase shifts of reflected paths [1], namely

passive beamforming. In practice, the phase shift choice is

typically limited to a prescribed discrete set. While the discrete

passive beamforming for a single user can be efficiently solved

[2], the multiple-user case (e.g., for industrial automation) is

much more challenging and remains an open problem.

The main difficulty in the discrete passive beamforming

design for the multi-user case lies in the discrete constraint.

Most previous works [3]–[5] just ignore the discrete constraint

at the optimization stage and then round the continuous

solution to the discrete set. It is generally hard to justify this

heuristic relaxation because the relaxed problem without the

discrete constraint is not equivalent to the original problem.

In sharp contrast to [3]–[5], this letter advocates a convex-

hull relaxation that guarantees the equivalence to the original

discrete problem. Further, this letter proposes an efficient

alternating projection/proximal gradient descent and ascent

algorithm for solving the relaxed problem. As shown in [6], the

branch-and-bound method and the heuristic methods including

the genetic algorithm have been considered.

Many previous efforts in the realm of passive beamform-

ing focus on the single-user case. To maximize the spectral

efficiency for a multiple-input multiple-output (MIMO) link,

the work [7] coordinates the phase shifts of IRS by the Rie-

mannian conjugate gradient method. Considering the double-

IRS system, the work [8] proposes a geometric approach to

the signal-to-noise ratio (SNR) maximization problem. The

more recent work [9] extends the SNR problem to the case

of multiple IRSs. While all the above works require the

full channel state information (CSI), a line of studies [10]–

[12] advocate blind beamforming without using any channel

knowledge. Specifically, [10] addresses a special ON-OFF case

of passive beamforming, [11] solves the general K-ary pas-

sive beamforming problem approximately while [2] solves it

globally, and [12] deals with multiple IRSs, all for maximizing

the received signal power at a single target receiver.

For the multi-user case, some existing works consider

the common-message multicast network [13]–[16]. To avoid

channel estimation, the work [13] proposes an ad-hoc passive

beamforming scheme that randomly configures the IRS during

the channel coherence interval. Assuming that the CSI is

available and the phase shift of each reflective element (RE)

can be chosen arbitrarily, the work [15] proposes an alternating

direction method of multipliers based method for the max-min

SNR problem. In the presence of the discrete constraint, the

work [16] suggests a gradient descent-ascent (GDA) approach.

In contrast, [17]–[21] account for the downlink transmission

with interference. More specifically, the work [17] aims to

optimize two IRSs jointly in order to maximize the minimum

signal-to-interference-plus-noise ratio (SINR) across multiple

users, and [18] considers a weighted max-min SINR prob-

lem. Moreover, [19] considers maximizing the sum rate, [20]

considers minimizing the total latency, and [21] considers

maximizing the system energy efficiency. As for the used

algorithms, all of [17]–[20] rely on the semidefinite relaxation

method while [21] uses the Riemannian gradient method.

II. SYSTEM MODEL

Consider an IRS-assisted multi-user downlink network in

which the base station (BS) with M antennas serves a total of

U single-antenna users. The IRS comprises N REs. We use

u = 1, 2, . . . , U to index the users, and use n = 1, 2, . . . , N
to index the REs. Denote by du ∈ CM the straight channel

from the BS to user u. Denote by F ∈ CN×M the channel

from the BS to the IRS, whose (n,m)th entry is the channel

from the mth antenna of the BS to the nth RE. Denote by

gu ∈ C1×N the channel from the IRS to user u, whose nth

entry is the channel from the nth RE to user u. Let wu ∈ CM

be the beamforming vector at the BS for user u; write W =
[w1,w2, . . . ,wU ] with the power constraint ‖W ‖2F ≤ P .

We denote by θn ∈ [0, 2π) the phase shift induced by RE n
in its corresponding reflected path. From a practical standpoint,

we further assume that each θn can only take on values from

the discrete set {0, 2π
K
, 2× 2π

K
, . . . , (K− 1)× 2π

K
} given some

integer K ≥ 2. Define the variable

x = [1, x1, x2, . . . , xN ]H where each xn = ejθn . (1)
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Because of the discrete constraint on θn, each xn is limited to

X =
{

e
j2kπ

K | k = 0, 1, . . . ,K − 1
}

. (2)

With the (N + 1)×M matrix

Φu =

[

d⊤
u

diag(gu)F

]

, (3)

the received signal at user u can be computed as xH
Φuwusu+

∑U
u′=1,u′ 6=u x

H
Φuwu′su′ + zu, where su ∼ CN (0, 1) is the

independent symbol intended for user u, and zu ∼ CN (0, σ2
u)

is the background noise. The resulting SINR of user u is

SINRu =
xHCuux

∑

u′ 6=u x
HCuu′x+ σ2

u

, (4)

where

Cuu′ = Φuwu′wH
u′Φ

H
u . (5)

To achieve the max-min fairness for U downlink users, we

consider the joint active and passive beamforming problem as

maximize
W ,x

min
u

{SINRu} (6a)

subject to xn ∈ X , n = 1, 2, . . . , N, (6b)

‖W ‖2F ≤ P. (6c)

We propose optimizing two variables W and x alternatingly

(e.g., as in [18] and [22]). In particular, when x is fixed, the

problem of W can be optimally solved as in [23].

The rest of the letter focuses on optimizing x in problem

(6) with W being fixed. The main difficulty in optimizing x

lies in the discrete constraint (6b). To overcome this difficulty,

many previous works [3]–[5] propose to simply ignore the

discrete constraint by allowing each phase shift θn to take an

arbitrary value in [0, 2π), i.e., X is relaxed as

X̂ =
{

ejθ | θ ∈ [0, 2π)
}

=
{

x ∈ C | |x| = 1
}

. (7)

Hence, each xn now lies on the unit circle in the complex

plane. After the relaxed problem is solved, the obtained

solution is rounded to the discrete set X in (2). However,

such relaxation cannot guarantee the equivalence between the

relaxed problem and the original one, thereby resulting in a

potentially large performance loss.

III. CONVEX-HULL RELAXATION

Our work also seeks to eliminate the discrete constraint from

(6), but by relaxing the discrete set X to its convex hull

conv(X ) =

{

K
∑

k=1

λkxk

∣

∣

∣

∣

xk ∈ X ,

K
∑

k=1

λk = 1, λk ≥ 0, ∀ k

}

.

(8)

Fig. 1 shows the conventional relaxation X̂ in (7) and the

convex-hull relaxation conv(X ) in (8) of the discrete set X
when K = 4. The main feature of the proposed convex-

hull relaxation conv(X ) is that it allows for an equivalent

continuous reformulation of (6), which significantly facilitates

the algorithmic development. As shown in Fig. 1, all the

feasible solutions in X turn out to be the vertices of the convex

Fig. 1. Conventional relaxation X̂ vs. convex-hull conv(X ) when K = 4.

hull conv(X ), which are the farthest points from the origin in

the complex unit ball. As such, it will encourage choosing

a discrete solution from X if we require the solution to be

sufficiently far away from the origin.

The above idea can be realized by reformulating the discrete

problem (6) (with respect to x) as a continuous problem:

maximize
x

min
u

{

xHCuux
∑

u′ 6=u x
HCuu′x+ σ2

u

}

+ λ‖x‖1 (9a)

subject to xn ∈ conv(X ), n = 1, 2, . . . , N, (9b)

where λ > 0 is a positive parameter. Intuitively, by increasing

λ, the solution of (9) would go toward a vertex of conv(X ).
Clearly, as λ → ∞, the solution of (9) must be a vertex of

conv(X ) and hence it must lie in X . One main result of this

letter is to show that it suffices to use a finite parameter λ to

achieve the above goal, i.e., the relaxed problem (9) with a

proper λ is equivalent to the original discrete problem (6).

Lemma 1: All locally and globally optimal solutions of

problem (9) lie on the boundary of conv(X ), which is denoted

as ∂conv(X ), so long as the parameter

λ > max
u

Lu, (10)

where Lu = 2‖Cuu‖F

σ2
u

(

∑

u′ 6=u
(N+1)‖Cuu′‖F

σ2

u′

+ 2
)

.

Proof: Suppose that there exists a locally or globally

optimal solution x of (9) with its entry xn′ /∈ ∂conv(X ).
Then, for this xn′ , we can find a real scalar r > 1 such that

rxn′ ∈ ∂conv(X ), as illustrated in Fig. 2(a). For any real

scalar 1 < δ < r, define

zδ = [1, zδ1, . . . , z
δ
N ]⊤ where zδn =

{

δxn, if n = n′;

xn, otherwise.
(11)

Moreover, consider the function

fu(x) =
xHCuux

∑

u′ 6=u x
HCuu′x+ σ2

u

. (12)

It can be shown that

fu(x1)− fu(x2) ≥ −Lu‖x1 − x2‖2 (13)

for any two x1,x2 ∈ conv(X ), so Lu is the Lipschitz constant

of fu(x). We then have

fu(z
δ)− fu(x) + λ‖zδ‖1 − λ‖x‖1 ≥ (λ− Lu) (δ − 1)|xn′ |.

(14)



3

The relaxed optimization objective in (9a) can be written as

f0(x) = minu{fu(x)}+λ‖x‖1. It immediately follows from

(10) and (14) that f0(z
δ)− f0(x) > 0 for all δ ∈ (1, r). This

shows that x is not a locally optimum solution, so we arrive

at a contradiction. The proof is then completed.

Theorem 1: The relaxed problem (9) is equivalent to the

original discrete problem (6) if the parameter

λ >
sin(π/K)

1− cos(π/K)
·max

u
Lu. (15)

Proof: We start by showing that a solution x of problem

(9) must be a solution of problem (6). The most nontrivial step

is to show that each entry of this solution x lies in the discrete

set X . Since any λ in (15) must satisfy the condition in (10),

x must lie on the convex-hull boundary ∂conv(X ) according

to Lemma 1. Assume that x has an entry xn′ /∈ X and v ∈ X
is the nearest discrete point, as shown in Fig. 2(b). We let

z = [1, z1, . . . , zN ]⊤ where zn =

{

v, if n = n′;

xn, otherwise.
(16)

Based on (13), we further derive

fu(z) − fu(x) + λ‖z‖1 − λ‖x‖1 ≥

− Lu|v − xn′ |+ λ(1− |xn′ |). (17)

Let t = |v − xn′ |; observe that 0 < t ≤ sin(π/K). With K
and t, the value of |xn′ | is given by

|xn′ | =

√

cos2
( π

K

)

+

(

sin
( π

K

)

− t

)2

. (18)

Substituting (18) into (17), we obtain

fu(z)− fu(x) + λ‖z‖1 − λ‖x‖1

≥ −Lu · t+ λ− λ

√

cos2
( π

K

)

+

(

sin
( π

K

)

− t

)2

. (19)

Observe that when z and x are both fixed, there exists some

t0 ∈ (0, sin(π/K)] such that the lower bound in the right-

hand side of (19) increases with t for t ∈ (0, t0) and decreases

with t for t ∈ [t0, sin(π/K)]. Furthermore, due to (15), the

infimum of the lower bound must be attained at t = 0,

so it holds that fu(z) − fu(x) + λ‖z‖1 − λ‖x‖1 > 0 for

any t ∈ (0, sin(π/K)]. We still write the objective function

of (9) as f0(x) = minu{fu(x)} + λ‖x‖1. It follows that

f0(z) > f0(x). The above result contradicts the assumption

that x is globally optimal for problem (9). Therefore, as long

as x is a globally optimal solution of (9), we must have

xn ∈ X for all n and ‖x‖1 = N + 1. Now it is simple

to show that the solution x of (9) must be a solution of (6).

For the contradiction purpose, assume that x is not optimal for

(6) while x̃ is a globally optimum solution of (6). Thus, we

must have minu{fu(x̃)} > minu{fu(x)}. Moreover, because

‖x̃‖1 = ‖x‖1 = N + 1, we further have f0(x̃) > f0(x);
which contradicts the assumption that x is globally optimal

for (9). Thus, x must be a globally optimal solution of (6).

We then verify the converse, i.e., a solution x of (6) must be

a solution of (9). Suppose that x̃ is a solution of (9). From the

(a) (b)

Fig. 2. Two key steps in proving Lemma 1 and Theorem 1. Panel (a) shows
the definition of rx

n
′ . Panel (b) illustrates the computation of |x

n
′ |.

Fig. 3. The IRS-assisted downlink network in our simulations.

previous part, we know that x̃ must be a solution (6). Since x

and x̃ are both feasible for (6), it follows that ‖x‖1 = ‖x̃‖1 =
N+1; since x and x̃ are both globally optimal for (6), it holds

that min
u

{fu(x̃)} = min
u

{fu(x)}; thus, x is equally good as

x̃ for (9), so x must be a globally optimal solution of (9).

Combining the above results verifies the equivalence.

Here are two remarks on Lemma 1 and Theorem 1. First,

the use of ‖x‖1 in (9) is critical. If we use ‖x‖22 instead, then

it is difficult to show that all the locally optimal points must

lie on the convex hull boundary. Further, if we switch to some

other penalty terms, then we are faced with the problem of

whether a finite lower bound on λ still exists. Second, using

the convex hull to approximate the discrete set can be found

in the literature [24], [25], but its application to the passive

beamforming has not yet been explored. Moreover, because

the objective function in (6) is more complicated than that in

[24], it requires new efforts to establish the equivalence to the

original problem, as shown in Lemma 1 and Theorem 1.

IV. PROPOSED ALGORITHM

In this section, we propose an alternating projec-

tion/proximal gradient descent and ascent algorithm for solv-

ing problem (9). The proposed algorithm is based on the

following reformulation of problem (9):

max
x

min
y∈△

U
∑

u=1

yux
HCuux

∑

u′ 6=u x
HCuu′x+ σ2

u

+ λ‖x‖1 (20a)

subject to xn ∈ conv(X ), n = 1, 2, . . . , N, (20b)

where y = [y1, y2, . . . , yU ]
⊤ is an auxiliary variable and △ =

{y | 1
⊤y = 1, yu ≥ 0} is the simplex. The equivalence

between (9) and (20) follows from the following observation:
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Fig. 4. Minimum SINR vs. U when N = 500. Fig. 5. Minimum SINR vs. N when U = 9. Fig. 6. Convergence as N = 500 and U = 9.

Algorithm 1 Proposed Algorithm

1: input: {Φu} and X .

2: for i = 1, 2, . . . , T1 do

3: Decide W by the method in [23].

4: initialize λ = 0.0001.

5: for j = 1, 2, . . . , T2 do

6: if mod(j, 100) is 0 then

7: Update λ = 10λ.

8: end if

9: Update y by (21).

10: Update x by (22).

11: end for

12: end for

13: Output: W and x.

if x has been optimally determined, we would assign yu = 1
to the minimum term while setting yu′ = 0 for the rest.

We propose optimizing x and y alternatingly in (20).

Denote by g(x,y) the first smooth term and denote by h(x)
the second nonsmooth term of the optimization objective in

(20a), respectively. For fixed x, the auxiliary variable y can

be updated by performing a projection gradient descent step:

yt+1 = Proj△

(

yt − αt∇yg(x
t,yt)

)

, (21)

where t is the iteration index, αt > 0 is the stepsize, and

Proj△(·) is the projection onto △. The simplex projection

can be efficiently done with a complexity of O(U logU) [26].

For fixed y, update x by the proximal gradient ascent:

xt+1 = argmin
x∈A

1

2βt
‖x− xt − βt∇xg(x

t,yt+1)‖22 − h(x),

(22)

where βt > 0 and A =
{

xn ∈ conv(X )
}

. The operation

in (22) can be done efficiently as in [27]. Algorithm 1

summarizes the above steps. The per-iteration complexity

of our algorithm is O(N2U2), and that of GDA [16] is

O(N2U2 + NK), where N ≫ U . Note that the complexity

is at least quadratic in N if the gradient is used.

The above algorithm can be extended to the weighted

sum-rate maximization problem. Our algorithm can also be

extended to the active IRS case [28]. In this case, we perform

the proposed algorithm and update the amplification factor as

TABLE I
RUNNING TIME OF DIFFERENT METHODS WHEN N = 500.

Running Time (second)

Method U = 5 U = 10 U = 15

Proposed Algorithm 91.1 115.3 151

GDA [16] 98.8 171.3 221.2

Riemannian [21] 96.9 153.4 194.5

in [28] in an alternating fashion.

V. SIMULATION RESULTS

Fig. 3 shows the considered IRS-assisted multi-user down-

link network at 2.6 GHz. The transmit antennas are arranged

as a uniform linear array while the REs are arranged as

a uniform planar array, with half-wavelength spacing. The

pathloss model follows [29]. We adopt the Rician fading model

[30] with the Rician factor k = 10.

Let P = 30 dBm, σ2
u = −90 dBm, K ∈ {2, 4}, and

M = 64. The users are randomly distributed in the shaded

area as shown in Fig. 3. The GDA method in [16] and the

Riemannian method in [21] are the benchmarks; the solution

of the Riemannian method is rounded to the discrete set. Note

that our algorithm contains the outer iteration that updates W

iteratively as well as the inner loop that updates x and y

iteratively under the current W . We run 1000 inner iterations

per outer iteration. At the beginning of each outer iteration, λ
is initialized to 0.0001, and then is multiplied by 10 every after

100 inner iterations. Moreover, initialize both α and β to 0.01,

and update them as αt+1 = 0.997αt and βt+1 = 0.997βt.

Fig. 4 shows the minimum SINR versus the number of

users U when N = 500. Observe that the minimum SINRs

achieved by the different algorithms all decrease with U ;

this implies that it is increasingly difficult to coordinate the

beams when more users are in the network. Observed also that

our algorithm always outperforms the GDA and Riemannian

algorithms. Fig. 5 shows the minimum SINR versus the

number of REs N when U = 9. As one can expect, the

minimum SINRs achieved by all the algorithms increase with

N . Moreover, we compare the proposed algorithm and the

exhaustive search method for a toy model with N = 10 and

U = 5. Our simulation shows that the proposed algorithm
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attains the minimum SINR of 7.31 dB while the global

optimum achieved by the exhaustive search equals 7.41 dB.

Moreover, we compare the convergence behaviors of the

different algorithms in Fig. 6. Observe that our algorithm has

a much faster convergence. Note that the convergence rate of

GDA is sensitive to K . Finally, observe from Table I that our

algorithm has the highest time-efficiency.

VI. CONCLUSION

This letter aims to maximize the minimum SINR among

multiple users in an IRS-assisted downlink network under a

discrete constraint on passive beamforming. While many ex-

isting works adopt a unit-circle relaxation, this letter proposes

a convex-hull relaxation so that the new continuous problem

is guaranteed to be equivalent to the original discrete problem.

The relaxed problem can be efficiently solved by alternating

projection/proximal gradient descent and ascent algorithm.

REFERENCES

[1] Q. Wu, B. Zheng, C. You, L. Zhu, K. Shen, X. Shao, W. Mei, B. Di,
H. Zhang, E. Basar, L. Song, M. D. Renzo, Z.-Q. Luo, and R. Zhang,
“Intelligent surfaces empowered wireless network: Recent advances and
the road to 6G,” Proc. IEEE, 2024, to be published.

[2] S. Ren, K. Shen, X. Li, X. Chen, and Z.-Q. Luo, “A linear time algorithm
for the optimal discrete IRS beamforming,” IEEE Wireless Commun.

Lett., vol. 12, no. 3, pp. 496–500, Mar. 2023.
[3] Q. Wu and R. Zhang, “Beamforming optimization for wireless network

aided by intelligent reflecting surface with discrete phase shifts,” IEEE

Trans. Commun., vol. 68, no. 3, pp. 1838–1851, Mar. 2020.
[4] Y. Li, M. Jiang, Q. Zhang, and J. Qin, “Joint beamforming design

in multi-cluster MISO NOMA reconfigurable intelligent surface-aided
downlink communication networks,” IEEE Trans. Commun., vol. 69,
no. 1, pp. 664–674, Jan. 2021.

[5] C. You, B. Zheng, and R. Zhang, “Channel estimation and passive
beamforming for intelligent reflecting surface: Discrete phase shift and
progressive refinement,” IEEE J. Sel. Areas Commun., vol. 38, no. 11,
pp. 2604–2620, Nov. 2020.

[6] C. Pan, G. Zhou, K. Zhi, S. Hong, T. Wu, Y. Pan, H. Ren, M. D. Renzo,
A. Lee Swindlehurst, R. Zhang, and A. Y. Zhang, “An overview of signal
processing techniques for RIS/IRS-aided wireless systems,” IEEE J. Sel.

Topics Signal Process., vol. 16, no. 5, pp. 883–917, Aug. 2022.
[7] E. E. Bahingayi and K. Lee, “Low-complexity beamforming algorithms

for IRS-aided single-user massive MIMO mmWave systems,” IEEE

Trans. Wireless Commun., vol. 21, no. 11, pp. 9200–9211, Nov. 2022.
[8] Y. Han, S. Zhang, L. Duan, and R. Zhang, “Cooperative double-IRS

aided communication: Beamforming design and power scaling,” IEEE

Wireless Commun. Lett., vol. 9, no. 8, pp. 1206–1210, Aug. 2020.
[9] W. Mei and R. Zhang, “Cooperative beam routing for multi-IRS aided

communication,” IEEE Wireless Commun. Lett., vol. 10, no. 2, pp. 426–
430, Feb. 2021.

[10] V. Arun and H. Balakrishnan, “RFocus: Beamforming using thousands
of passive antennas,” in USENIX Symp. Netw. Sys. Design Implementa-

tion (NSDI), Feb. 2020, pp. 1047–1061.
[11] S. Ren, K. Shen, Y. Zhang, X. Li, X. Chen, and Z.-Q. Luo, “Configuring

intelligent reflecting surface with performance guarantees: Blind beam-
forming,” IEEE Trans. Wireless Commun., vol. 22, no. 5, pp. 3355–3370,
May 2023.

[12] F. Xu, J. Yao, W. Lai, K. Shen, X. Li, X. Chen, and Z.-Q. Luo,
“Coordinating multiple intelligent reflecting surfaces without channel
information,” IEEE Trans. Signal Process., vol. 72, pp. 31–46, 2024.

[13] Q. Tao, S. Zhang, C. Zhong, and R. Zhang, “Intelligent reflecting surface
aided multicasting with random passive beamforming,” IEEE Wireless

Commun. Lett., vol. 10, no. 1, pp. 92–96, Jan. 2020.
[14] K.-W. Huang and H.-M. Wang, “Passive beamforming for IRS aided

wireless networks,” IEEE Wireless Commun. Lett., vol. 9, no. 12, pp.
2035–2039, Dec. 2020.

[15] K. Guo, C. Wang, Z. Li, D. W. K. Ng, and K.-K. Wong, “Multiple
UAV-borne IRS-aided millimeter wave multicast communications: A
joint optimization framework,” IEEE Commun. Lett., vol. 25, no. 11,
pp. 3674–3678, Nov. 2021.

[16] G. Yan, L. Zhu, and R. Zhang, “Passive reflection optimization for IRS-
aided multicast beamforming with discrete phase shifts,” IEEE Wireless

Commun. Lett., vol. 12, no. 8, pp. 1424–1428, Aug. 2023.
[17] B. Zheng, C. You, and R. Zhang, “Double-IRS assisted multi-user

MIMO: Cooperative passive beamforming design,” IEEE Trans. Wireless

Commun., vol. 20, no. 7, pp. 4513–4526, Jul. 2021.
[18] H. Xie, J. Xu, and Y.-F. Liu, “Max-min fairness in IRS-aided multi-cell

MISO systems with joint transmit and reflective beamforming,” IEEE

Trans. Wireless Commun., vol. 20, no. 2, pp. 1379–1393, Feb. 2020.
[19] W. Ni, X. Liu, Y. Liu, H. Tian, and Y. Chen, “Resource allocation for

multi-cell IRS-aided NOMA networks,” IEEE Trans. Wireless Commun.,
vol. 20, no. 7, pp. 4253–4268, Jul. 2021.

[20] H. Xie, J. Xu, Y.-F. Liu, L. Liu, and D. W. K. Ng, “User grouping and
reflective beamforming for IRS-aided URLLC,” IEEE Wireless Commun.

Lett., vol. 10, no. 11, pp. 2533–2537, Nov. 2021.
[21] S. Zargari, A. Khalili, and R. Zhang, “Energy efficiency maximization

via joint active and passive beamforming design for multiuser MISO
IRS-aided SWIPT,” IEEE Wireless Commun. Lett., vol. 10, no. 3, pp.
557–561, Mar. 2021.

[22] Y.-F. Liu, Y.-H. Dai, and Z.-Q. Luo, “Max-min fairness linear transceiver
design for a multi-user MIMO interference channel,” IEEE Trans. Signal

Process., vol. 61, no. 9, pp. 2413–2423, May 2013.
[23] A. Wiesel, Y. C. Eldar, and S. Shamai, “Linear precoding via conic

optimization for fixed MIMO receivers,” IEEE Trans. Signal Process.,
vol. 54, no. 1, pp. 161–176, Jan. 2006.

[24] Z. Wu, B. Jiang, Y.-F. Liu, M. Shao, and Y.-H. Dai, “Efficient CI-based
one-bit precoding for multiuser downlink massive MIMO systems with
PSK modulation,” IEEE Trans. Wireless Commun., vol. 23, no. 5, pp.
4861–4875, May 2023.

[25] Y.-F. Liu, T.-H. Chang, M. Hong, Z. Wu, A. M.-C. So, E. A. Jorswieck,
and W. Yu, “A survey of advances in optimization methods for wireless
communication system design,” IEEE J. Sel. Areas Commun., 2024, to
be published.

[26] L. Condat, “Fast projection onto the simplex and the ℓ1 ball,” Math.

Program., vol. 158, no. 1-2, pp. 575–585, Sep. 2015.
[27] Z. Wu, Y.-F. Liu, B. Jiang, and Y.-H. Dai, “Efficient quantized constant

envelope precoding for multiuser downlink massive MIMO systems,” in
Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), Jun.
2023.

[28] K. Zhi, C. Pan, H. Ren, K. K. Chai, and M. Elkashlan, “Active RIS
versus passive RIS: Which is superior with the same power budget?”
IEEE Wireless Commun. Lett., vol. 26, no. 5, pp. 1150–1154, May 2022.

[29] T. Jiang, H. V. Cheng, and W. Yu, “Learning to reflect and to beamform
for intelligent reflecting surface with implicit channel estimation,” IEEE

J. Sel. Areas Commun., vol. 39, no. 7, pp. 1931–1945, Jul. 2021.
[30] D. Tse and V. Pramod, Fundamentals of Wireless Communication.

Cambridge University Press, 2005.


	Introduction
	System Model
	Convex-Hull Relaxation
	Proposed Algorithm
	Simulation Results
	Conclusion
	References

